PLAN DE DESARROLLO COMPLETO - 05_06_OPTIMIZATION_LAYER¶
MARCO TEÓRICO-PRÁCTICO¶
Conceptos Fundamentales¶
- SIMD (Single Instruction Multiple Data): Paralelismo a nivel de datos - una instrucción opera sobre vector de múltiples elementos
- Vectorización: Transformación de loops escalares a código que procesa múltiples samples simultáneamente
- Loop Optimization: Transformaciones clásicas (unrolling, fusion, interchange, tiling) para reducir overhead y mejorar cache locality
- Function Inlining: Eliminación de overhead de llamadas reemplazando calls con cuerpo de función
- Cache Hierarchy: L1 (~1-3 ciclos, 32KB) → L2 (~10-20 ciclos, 256KB) → L3 (~40-70 ciclos, 8MB) → RAM (~100-300 ciclos)
- Branch Prediction: CPU predice dirección de branches - misprediction cuesta 10-20 ciclos
- Profile-Guided Optimization (PGO): Usar datos de ejecución real para guiar decisiones de optimización
Algoritmos Específicos¶
- DFS 3-Color Algorithm: Para cycle detection en dependency graphs (WHITE/GRAY/BLACK)
- Topological Sort: Kahn's algorithm para ordenamiento respetando dependencias
- Common Subexpression Elimination: Identificar expresiones duplicadas y calcularlas una sola vez
- Constant Folding: Pre-cálculo de expresiones constantes en compile-time
- Strength Reduction: Reemplazar operaciones costosas con equivalentes baratas (e.g., x*2 → x<<1)
- Auto-tuning: Search algorithms para encontrar parámetros óptimos según hardware
Patterns Arquitectónicos¶
- Strategy Pattern: Múltiples implementaciones de misma operación (SSE, AVX, NEON, generic)
- Template Method: Skeleton de optimización con steps especializables
- Decorator Pattern: Wrapping de funciones con instrumentación para profiling
- Factory Pattern: Selección de implementación optimizada según platform runtime
- Observer Pattern: Notificación de eventos de optimización para logging/monitoring
Métricas de Calidad¶
- Speedup: 5-10x vs naive implementation (Phase 1: 2-4x, Phase 2: 5-10x, Phase 3: 50-100x con GPU)
- Vectorization Coverage: >80% de loops críticos vectorizados
- Cache Hit Rate: >95% L1 cache hits en hot loops
- Branch Prediction Accuracy: >98% en código optimizado
- Multi-core Efficiency: 80%+ (N cores → 0.8N speedup)
- Test Coverage: >90%
- Correctness: 100% regression tests pasando
- Performance Consistency: <5% variación en benchmarks repetidos
PRIORIZACIÓN Y DEPENDENCIAS¶
Orden de Ejecución (Basado en Dependencias Técnicas)¶
TIER 1 - Foundation (Sin dependencias externas): - TAREA 10: regression_testing (necesario antes de cualquier optimización) - TAREA 8: platform_specific (detectar capabilities del hardware)
TIER 2 - Core Optimizations (Depende de TIER 1): - TAREA 1: vectorization_engine (base de performance DSP) - TAREA 4: expression_optimization (simplificaciones algebraicas) - TAREA 3: memory_optimization (cache awareness)
TIER 3 - Advanced Optimizations (Depende de TIER 2): - TAREA 2: loop_optimization (usa vectorization + memory) - TAREA 5: branch_optimization (usa expression optimization) - TAREA 2: function_optimization (usa loop + expression)
TIER 4 - Parallel Execution (Depende de TIER 3): - TAREA 6: parallel_execution (multi-threading) - TAREA 7: gpu_acceleration (offloading masivo)
TIER 5 - Intelligent Optimization (Depende de todos anteriores): - TAREA 9: profile_guided_optimization (usa datos reales)
TIER 6 - Integration & Finalization: - TAREA FINAL-A: Integration Testing - TAREA FINAL-B: System Integration - TAREA FINAL-C: Documentation Package
TAREAS DETALLADAS¶
TAREA 1: Vectorization Engine - El Paralelizador SIMD¶
Carpeta: 05_06_00_vectorization_engine
Criticidad: ⭐⭐⭐⭐⭐ (Máxima - impacto 4-8x en performance)
Prioridad: TIER 2
DESARROLLO:
- Core Implementation
- Vectorizability Analyzer:
- Loop dependency analysis (detectar dependencias entre iteraciones)
- Memory alignment checker (verificar alineación 16/32-byte)
- Branch complexity evaluator (identificar if statements que bloquean vectorización)
- Trip count analyzer (determinar si loop count es conocido)
- SIMD Code Generator:
- SSE intrinsics wrapper (4 floats simultáneos)
- AVX intrinsics wrapper (8 floats simultáneos)
- AVX-512 intrinsics wrapper (16 floats simultáneos)
- ARM NEON intrinsics wrapper (4 floats simultáneos)
- Remainder loop handler (procesar últimos N % vector_width samples)
- Data Layout Transformer:
- AoS → SoA conversion (Array-of-Structures a Structure-of-Arrays)
- Interleave/deinterleave operations para stereo/multi-channel
- Alignment enforcement (insertar padding automáticamente)
- Auto-vectorization Controller:
- Compiler flag configuration (-O3, -ftree-vectorize, -march=native)
- Vectorization report parser (analizar output de -fopt-info-vec)
- Fallback selector (elegir entre manual intrinsics vs auto-vectorization)
-
Vector Width Selector:
- Runtime CPU capability detection (cpuid, _mm_getcsr)
- Optimal vector width calculator según workload
- Dynamic dispatch a implementación apropiada
-
Testing Framework
- Unit tests: Cada instrinsic wrapper con datos conocidos
- Vectorization coverage tests: Verificar que loops críticos se vectorizan
- Correctness tests: Comparar output vectorizado vs escalar (epsilon <1e-6)
- Alignment tests: Verificar que datos están correctamente alineados
- Performance tests: Benchmark vectorizado vs escalar (esperado 4-8x)
- Remainder handling tests: Verificar que N no-múltiplo de vector_width funciona
- Cross-platform tests: Mismo código en SSE, AVX, NEON produce mismo resultado
- Regression tests: Suite de audio samples procesados bit-exact
-
Test coverage >90%
-
Documentación
- SIMD fundamentals guide (qué es SIMD, por qué importa)
- Vectorization best practices (cómo escribir código vectorizable)
- Intrinsics reference (cada wrapper documentado)
- Platform comparison (SSE vs AVX vs NEON capabilities)
- Troubleshooting vectorization failures (por qué loop no se vectorizó)
-
Performance tuning guide (optimizar para diferentes vector widths)
-
Interfaces y Conexiones
VectorizationEngine.analyze_loop(loop_ast)→ VectorizabilityReportVectorizationEngine.generate_simd_code(loop, target_isa)→ SIMD codeVectorizationEngine.transform_layout(data, AoS_to_SoA)→ Transformed data- Event:
on_vectorization_success(loop_id, speedup) - Event:
on_vectorization_failure(loop_id, reason) - Symlink:
kernel_implementations/ → ../04_KERNELS_L0/
ENTREGABLES: - [ ] Vectorization analyzer funcional (detecta loops vectorizables) - [ ] SIMD code generators para SSE/AVX/NEON - [ ] Data layout transformer (AoS ↔ SoA) - [ ] Runtime dispatch system - [ ] Suite de tests >90% coverage - [ ] Documentación completa con examples - [ ] Benchmarks mostrando 4-8x speedup en kernels críticos
ESTIMACIÓN: 3 semanas
TAREA 2: Loop Optimization - El Transformador de Iteraciones¶
Carpeta: 05_06_01_loop_optimization
Criticidad: ⭐⭐⭐⭐ (Alta)
Prioridad: TIER 3
DESARROLLO:
- Core Implementation
- Loop Unrolling Engine:
- Unroll factor calculator (2x, 4x, 8x según cache/register pressure)
- Code generator para unrolled loops
- Remainder loop handler
- Cost model (trade-off code size vs performance)
- Loop Fusion System:
- Dependency analyzer (identificar loops fusionables)
- Fusion transformer (combinar loops sobre mismos datos)
- Register pressure estimator (evitar spilling)
- Validation checker (verificar que fusion es legal)
- Loop Interchange Optimizer:
- Cache access pattern analyzer
- Optimal order calculator (innermost loop debe acceder memoria contiguamente)
- Dependence graph checker
- Transformation validator
- Loop Tiling System:
- Tile size calculator (basado en cache size)
- Tiling code generator
- Multi-level tiling support (L1, L2, L3 cache)
- Boundary condition handler
-
Loop Distribution:
- Loop fission transformer (opuesto a fusion, para paralelización)
- Dependence breaker
- Load balancing optimizer
-
Testing Framework
- Unit tests: Cada transformación independiente
- Correctness tests: Output transformado == output original
- Performance tests: Unrolled >10% faster, Fused >20% faster
- Cache simulation tests: Tiling reduce cache misses >50%
- Edge cases: Loops con trip counts no-divisibles
- Nested loops: Interchange + tiling combinados
- Dependency tests: Transformaciones ilegales rechazadas
- Regression suite: Audio samples procesados correctamente
-
Test coverage >90%
-
Documentación
- Loop transformation theory (cuándo aplicar qué)
- Unrolling guidelines (factor óptimo según arquitectura)
- Fusion opportunities (patterns comunes fusionables)
- Tiling strategies (tile size selection)
- Cache optimization guide
-
Examples de transformaciones en código real
-
Interfaces y Conexiones
LoopOptimizer.unroll(loop, factor)→ Unrolled codeLoopOptimizer.fuse(loop1, loop2)→ Fused loopLoopOptimizer.interchange(loop_nest, order)→ Reordered nestLoopOptimizer.tile(loop, tile_size)→ Tiled loopLoopOptimizer.analyze_dependencies(loop)→ DependencyGraph- Integration con vectorization_engine
- Symlink:
topology_definitions/ → ../05_TOPOLOGY_DESIGN/
ENTREGABLES: - [ ] Loop unrolling con factor selection automático - [ ] Loop fusion para reducir memory traffic - [ ] Loop interchange para cache optimization - [ ] Loop tiling para working set management - [ ] Tests >90% coverage - [ ] Documentación con ejemplos reales - [ ] Benchmarks mostrando mejoras medibles
ESTIMACIÓN: 2.5 semanas
TAREA 3: Function Optimization - El Eliminador de Overhead¶
Carpeta: 05_06_02_function_optimization
Criticidad: ⭐⭐⭐⭐ (Alta)
Prioridad: TIER 3
DESARROLLO:
- Core Implementation
- Inlining Engine:
- Call graph builder (analizar qué llama a qué)
- Inlining heuristic (tamaño función, frecuencia llamada, profundidad call chain)
- Code size estimator (evitar code bloat excesivo)
- Recursive inlining controller (límite de profundidad)
- Force-inline directives support
- Devirtualization System:
- Type propagation analyzer (determinar tipos concretos)
- Virtual call resolver (convertir virtual → direct cuando posible)
- Speculative devirtualization (optimistic dispatch con fallback)
- Function Fusion:
- Composition pattern detector (f(g(x)) patterns)
- Fusion transformer (combinar funciones pequeñas)
- Parameter optimization (eliminar argumentos redundantes)
- Tail Call Optimization:
- Tail recursion detector
- Tail call eliminator (convertir a loop)
-
Constant Propagation:
- Inter-procedural constant tracking
- Argument specialization (crear versiones con args constantes)
-
Testing Framework
- Inlining tests: Verificar que funciones pequeñas se inline
- Call overhead tests: Medir reducción de overhead (esperado 10-20 ciclos/call)
- Code size tests: Verificar que inlining no explota code size
- Devirtualization tests: Virtual calls convertidos a direct
- Correctness tests: Function fusion preserva semántica
- Tail recursion tests: Recursión convertida a loop
- Performance tests: Código con functions inlined >15% faster
- Regression suite: Audio processing correctness
-
Test coverage >90%
-
Documentación
- Inlining best practices (cuándo inline, cuándo no)
- Call overhead analysis (costo real de function calls)
- Devirtualization opportunities (virtual functions en DSP)
- Function fusion patterns (composiciones comunes)
- Code size vs performance trade-offs
-
Compiler directives reference (attribute((always_inline)), etc)
-
Interfaces y Conexiones
FunctionOptimizer.inline_function(call_site)→ Inlined codeFunctionOptimizer.devirtualize(virtual_call)→ Direct callFunctionOptimizer.fuse_functions(f, g)→ Fused functionFunctionOptimizer.analyze_call_graph()→ CallGraphFunctionOptimizer.estimate_code_size(function)→ Size estimate- Integration con loop_optimization (inlining expone más loop optimization)
- Symlink:
kernel_implementations/ → ../04_KERNELS_L0/
ENTREGABLES: - [ ] Inlining engine con heurísticas configurables - [ ] Devirtualization para eliminar indirect calls - [ ] Function fusion para composiciones comunes - [ ] Call graph analyzer - [ ] Tests >90% coverage - [ ] Documentación de estrategias - [ ] Benchmarks mostrando reducción de overhead
ESTIMACIÓN: 2 semanas
TAREA 4: Memory Optimization - El Organizador de Datos¶
Carpeta: 05_06_03_memory_optimization
Criticidad: ⭐⭐⭐⭐⭐ (Máxima - memoria es bottleneck principal)
Prioridad: TIER 2
DESARROLLO:
- Core Implementation
- Cache Analyzer:
- Cache miss simulator (estimar misses sin ejecutar)
- Working set calculator (cuánta memoria activa usa código)
- Cache line utilization tracker (qué % de cada línea se usa)
- Temporal/spatial locality analyzer
- Data Layout Optimizer:
- Structure packing (eliminar padding innecesario)
- Field reordering (hot fields juntos)
- AoS ↔ SoA transformer (ya mencionado en vectorization, refinar aquí)
- Alignment enforcer (16/32/64-byte alignment)
- Buffer Management:
- Lifetime analyzer (cuándo buffers están activos)
- Memory pool allocator (reuse buffers)
- In-place operation detector (evitar copias)
- Scratch buffer optimizer (temporary storage allocation)
- Prefetching System:
- Access pattern predictor
- Software prefetch inserter (__builtin_prefetch)
- Prefetch distance tuner
-
Memory Bandwidth Optimizer:
- Bandwidth usage tracker
- Copy elimination (eliminar memcpy innecesarios)
- Stream optimization (non-temporal stores)
-
Testing Framework
- Cache simulation tests: Verificar reducción de misses >50%
- Alignment tests: Todos los buffers SIMD correctamente alineados
- Memory layout tests: SoA vs AoS performance differential
- Buffer reuse tests: Verificar que pools funcionan sin leaks
- Prefetching tests: Medir impacto de prefetch (esperado 10-30% mejora)
- Bandwidth tests: Verificar que uso no excede peak bandwidth
- In-place tests: Verificar que copies se eliminan donde posible
- Regression suite: Corrección con diferentes layouts
-
Test coverage >90%
-
Documentación
- Cache hierarchy guide (L1/L2/L3 characteristics)
- Memory layout best practices (cuándo usar SoA vs AoS)
- Alignment requirements (SSE/AVX/NEON)
- Buffer management strategies (pools vs malloc)
- Prefetching guide (cuándo es beneficioso)
- Memory bandwidth optimization (evitar thrashing)
-
Debugging memory issues (cache miss profiling)
-
Interfaces y Conexiones
MemoryOptimizer.analyze_cache_behavior(code)→ CacheReportMemoryOptimizer.optimize_layout(struct)→ Optimized layoutMemoryOptimizer.allocate_buffer_pool(size)→ BufferPoolMemoryOptimizer.insert_prefetch(access_pattern)→ Prefetched codeMemoryOptimizer.eliminate_copies(topology)→ Copy-free topology- Integration con vectorization_engine (alignment crítico)
- Symlink:
topology_definitions/ → ../05_TOPOLOGY_DESIGN/
ENTREGABLES: - [ ] Cache analyzer con simulation - [ ] Data layout optimizer (packing, reordering, AoS↔SoA) - [ ] Buffer pool allocator - [ ] Software prefetching inserter - [ ] Copy elimination optimizer - [ ] Tests >90% coverage - [ ] Documentación de memory optimization - [ ] Benchmarks mostrando >95% cache hit rate
ESTIMACIÓN: 2.5 semanas
TAREA 5: Expression Optimization - El Simplificador Algebraico¶
Carpeta: 05_06_04_expression_optimization
Criticidad: ⭐⭐⭐ (Media)
Prioridad: TIER 2
DESARROLLO:
- Core Implementation
- Common Subexpression Eliminator:
- Expression tree builder (AST de expresiones)
- Subexpression hasher (identificar expresiones idénticas)
- Value numbering (asignar IDs únicos a expresiones)
- CSE transformer (reemplazar duplicados con temp variable)
- Constant Folder:
- Compile-time expression evaluator
- Constant propagator (propagar valores conocidos)
- Dead code eliminator (eliminar cálculos sin efecto)
- Algebraic Simplifier:
- Identity rules (x*1→x, x+0→x, x*0→0)
- Associativity optimizer (reordenar para exponer constants)
- Distributivity transformer (factorizar common terms)
- Trigonometric simplifier (sin²x+cos²x→1, etc)
- Strength Reducer:
- Expensive operation detector (div, pow, sqrt)
- Cheap replacement finder (x/2→x*0.5, x*2→x<<1)
- Platform-aware replacements (aprovechar FMA, rsqrt)
-
Reassociation Optimizer:
- Reordering para exponer paralelismo (a+b+c+d → (a+b)+(c+d))
- Reduction tree builder para minimize depth
-
Testing Framework
- CSE tests: Verificar que expresiones duplicadas se eliminan
- Constant folding tests: Verificar pre-cálculo correcto
- Algebraic simplification tests: Verificar identidades aplicadas
- Strength reduction tests: Verificar sustituciones correctas
- Numerical accuracy tests: Verificar que simplificaciones no introducen error
- Performance tests: Código simplificado >10% faster
- Correctness tests: Output matemáticamente equivalente
- Regression suite: Audio samples procesados correctamente
-
Test coverage >90%
-
Documentación
- Expression optimization theory
- Algebraic identities reference
- Strength reduction catalog (operaciones costosas → baratas)
- Numerical precision considerations
- Examples de optimizaciones aplicadas
-
Trade-offs (simplificación vs precisión)
-
Interfaces y Conexiones
ExpressionOptimizer.eliminate_cse(expression_tree)→ Optimized treeExpressionOptimizer.fold_constants(expression)→ Simplified exprExpressionOptimizer.simplify_algebraic(expression)→ Simplified exprExpressionOptimizer.reduce_strength(operation)→ Cheaper operationExpressionOptimizer.reassociate(expression)→ Reordered expr- Integration con function_optimization
- Symlink:
algorithm_specs/ → ../03_ALGORITHM_SPEC/
ENTREGABLES: - [ ] Common subexpression eliminator - [ ] Constant folder - [ ] Algebraic simplifier con reglas completas - [ ] Strength reducer - [ ] Tests >90% coverage - [ ] Documentación de transformaciones - [ ] Benchmarks mostrando reducción de operaciones
ESTIMACIÓN: 2 semanas
TAREA 6: Branch Optimization - El Eliminador de Saltos¶
Carpeta: 05_06_05_branch_optimization
Criticidad: ⭐⭐⭐ (Media)
Prioridad: TIER 3
DESARROLLO:
- Core Implementation
- Branch Eliminator:
- Conditional move generator (CMOV instructions)
- Branchless code transformer (usar masking)
- Predication support (ARM conditional execution)
- Select operator generator (ternary → SIMD select)
- Branch Prediction Hinter:
- Likely/unlikely annotation inserter (__builtin_expect)
- Profile data analyzer (determinar branches hot/cold)
- Branch layout optimizer (hot path linear)
- Loop Unswitching:
- Invariant condition detector (if que no depende de loop var)
- Unswitching transformer (mover if fuera de loop)
- Code duplication controller (evitar explosion)
- Switch Optimization:
- Jump table generator (dense switches)
- Binary search tree generator (sparse switches)
- Hash table generator (muy sparse switches)
-
Early Exit Optimizer:
- Guard condition hoister
- Short-circuit evaluator
-
Testing Framework
- Branchless tests: Verificar eliminación de branches
- CMOV tests: Verificar uso de conditional moves
- Prediction tests: Verificar hints correctos
- Unswitching tests: Verificar invariantes movidos fuera
- Switch tests: Verificar tabla de saltos vs tree
- Performance tests: Código branchless >15% faster (si branch unpredictable)
- Correctness tests: Transformaciones preservan semántica
- Regression suite: Audio procesado correctamente
-
Test coverage >90%
-
Documentación
- Branch cost analysis (misprediction penalty)
- Branchless programming guide
- Prediction hints usage
- Loop unswitching opportunities
- Switch optimization strategies
-
When to avoid branchless (predictable branches mejor dejar)
-
Interfaces y Conexiones
BranchOptimizer.eliminate_branch(if_statement)→ Branchless codeBranchOptimizer.insert_prediction_hint(branch, likely)→ Hinted codeBranchOptimizer.unswitch_loop(loop)→ Unswitched loopBranchOptimizer.optimize_switch(switch)→ Optimal dispatch- Integration con loop_optimization
- Symlink:
profile_data/ → ../18_QUALITY_METRICS/profiling/
ENTREGABLES: - [ ] Branch eliminator (branchless code generation) - [ ] Prediction hint inserter - [ ] Loop unswitching transformer - [ ] Switch optimizer - [ ] Tests >90% coverage - [ ] Documentación de estrategias - [ ] Benchmarks mostrando reducción de mispredictions
ESTIMACIÓN: 1.5 semanas
TAREA 7: Parallel Execution - El Distribuidor de Trabajo¶
Carpeta: 05_06_06_parallel_execution
Criticidad: ⭐⭐⭐⭐ (Alta)
Prioridad: TIER 4
DESARROLLO:
- Core Implementation
- Topology Parallelizer:
- Dependency graph analyzer (desde 05_TOPOLOGY_DESIGN)
- Independent node detector (nodos sin dependencias entre sí)
- Stage decomposer (dividir topología en stages paralelos)
- Load balancer (distribuir trabajo equitativamente)
- Thread Pool Manager:
- Worker thread pool (pre-crear N threads)
- Work queue (lock-free MPMC queue)
- Thread affinity manager (pin threads a cores)
- Priority scheduler (tareas críticas primero)
- Data Parallelism:
- Voice parallelizer (procesar voces independientes en paralelo)
- Channel parallelizer (stereo/multi-channel paralelo)
- Batch parallelizer (procesar múltiples buffers simultáneamente)
- Synchronization Primitives:
- Barrier implementation (threads esperan sync point)
- Atomic operations wrapper (lock-free communication)
- Condition variable manager
- Spinlock vs mutex selector (según contention)
-
NUMA Awareness:
- NUMA topology detector
- Memory affinity manager (allocate near core que procesa)
- Inter-socket communication minimizer
-
Testing Framework
- Parallelization tests: Verificar correctness con threads
- Scaling tests: N cores → 0.8N speedup (verificar efficiency >80%)
- Race condition tests: ThreadSanitizer, stress testing
- Deadlock tests: Verificar que no hay deadlocks
- Load balance tests: Verificar distribución equitativa
- NUMA tests: Verificar que memoria está near cores
- Throughput tests: Medir samples/sec con multi-threading
- Regression suite: Audio procesado igual que single-threaded
-
Test coverage >90%
-
Documentación
- Parallelization theory (Amdahl's law, Gustafson's law)
- Thread pool design
- Lock-free programming guide
- NUMA optimization
- Debugging parallel code
-
Performance tuning (thread count selection)
-
Interfaces y Conexiones
ParallelExecutor.parallelize_topology(topology)→ Parallel scheduleParallelExecutor.create_thread_pool(num_threads)→ ThreadPoolParallelExecutor.submit_task(task)→ FutureParallelExecutor.wait_all(futures)→ Results- Integration con topology_design (dependency graph)
- Symlink:
topology_definitions/ → ../05_TOPOLOGY_DESIGN/
ENTREGABLES: - [ ] Topology parallelizer con dependency analysis - [ ] Thread pool manager - [ ] Lock-free work queue - [ ] NUMA-aware allocator - [ ] Tests >90% coverage (incluyendo ThreadSanitizer) - [ ] Documentación de parallel programming - [ ] Benchmarks mostrando 80%+ multi-core efficiency
ESTIMACIÓN: 3 semanas
TAREA 8: GPU Acceleration - El Procesador Paralelo Masivo¶
Carpeta: 05_06_07_gpu_acceleration
Criticidad: ⭐⭐⭐ (Media - no todos los workloads se benefician)
Prioridad: TIER 4
DESARROLLO:
- Core Implementation
- Workload Classifier:
- Parallelizability scorer (cuánto paralelismo hay)
- Latency sensitivity detector (GPU tiene latencia alta)
- Data transfer cost estimator (CPU↔GPU bandwidth limitado)
- GPU suitability predictor (recomendar GPU o no)
- CUDA/OpenCL Code Generator:
- Kernel generator desde topología DSP
- Memory management (host ↔ device transfers)
- Grid/block size optimizer
- Shared memory allocator
- Transfer Optimizer:
- Pinned memory allocator (faster transfers)
- Asynchronous transfer scheduler (overlap compute + transfer)
- Batch aggregator (transferir batches grandes, no samples individuales)
- Multi-GPU Manager:
- GPU topology detector
- Work distribution entre GPUs
- Peer-to-peer transfer support
-
Fallback Manager:
- CPU fallback cuando GPU no disponible
- Graceful degradation
-
Testing Framework
- GPU kernel tests: Verificar corrección vs CPU reference
- Performance tests: Batch processing >50x speedup (apropiado workload)
- Transfer overhead tests: Medir costo CPU↔GPU
- Multi-GPU tests: Verificar scaling con 2+ GPUs
- Fallback tests: Verificar que CPU fallback funciona
- Memory tests: Verificar que no hay leaks
- Latency tests: Medir latencia end-to-end (GPU suele ser high-latency)
- Regression suite: Corrección matemática
-
Test coverage >85% (GPU testing más complejo)
-
Documentación
- GPU acceleration theory (cuándo usar GPU)
- CUDA/OpenCL programming guide
- Data transfer optimization
- Memory hierarchy (global, shared, registers)
- Multi-GPU programming
- Debugging GPU code
-
When NOT to use GPU (latencia crítica, workload pequeño)
-
Interfaces y Conexiones
GPUAccelerator.should_offload(workload)→ bool + justificationGPUAccelerator.generate_kernel(topology)→ GPU kernelGPUAccelerator.execute_on_gpu(data, kernel)→ ResultsGPUAccelerator.optimize_transfers(batch)→ Transfer plan- Integration con parallel_execution
- Symlink:
topology_definitions/ → ../05_TOPOLOGY_DESIGN/
ENTREGABLES: - [ ] Workload classifier (identificar buenos candidatos) - [ ] CUDA/OpenCL code generator - [ ] Transfer optimizer - [ ] Multi-GPU support - [ ] CPU fallback - [ ] Tests >85% coverage - [ ] Documentación de GPU acceleration - [ ] Benchmarks mostrando 50-100x speedup (batch processing)
ESTIMACIÓN: 4 semanas
TAREA 9: Platform-Specific Optimization - El Adaptador de Hardware¶
Carpeta: 05_06_08_platform_specific
Criticidad: ⭐⭐⭐⭐ (Alta)
Prioridad: TIER 1 (necesario antes de optimizaciones)
DESARROLLO:
- Core Implementation
- CPU Feature Detector:
- CPUID wrapper (x86 feature detection)
- Runtime ISA detection (SSE, SSE2, SSE3, SSSE3, SSE4, AVX, AVX2, AVX-512, FMA)
- ARM capabilities (NEON, Crypto extensions)
- Cache size detector (L1/L2/L3)
- Core count detector
- Platform Abstraction Layer:
- Unified API para operaciones platform-specific
- Backend selector (runtime dispatch a implementación óptima)
- Feature flag system
- Instruction Selection:
- FMA code path (fused multiply-add)
- Fast reciprocal sqrt (rsqrt approximation + Newton-Raphson)
- Fast division (reciprocal + multiply)
- Platform-specific intrinsics wrapper
- Micro-architecture Tuning:
- CPU model detector (Intel Skylake vs AMD Zen vs ARM Cortex)
- Latency/throughput tables por CPU
- Scheduling optimizer según características
-
Auto-tuning Infrastructure:
- Benchmark runner (probar variantes en runtime)
- Configuration cache (guardar mejor configuración por hardware)
- Offline tuning support (pre-tune en build farm)
-
Testing Framework
- Feature detection tests: Verificar detección correcta
- Dispatch tests: Verificar que se selecciona backend óptimo
- Correctness tests: Todas las variantes producen mismo output
- Performance tests: Platform-specific >20% faster que generic
- Portability tests: Código funciona en 5+ architectures
- Auto-tuning tests: Encuentra configuración óptima
- Regression suite: Corrección en todas las platforms
-
Test coverage >90%
-
Documentación
- Platform support matrix (qué features en qué CPUs)
- Feature detection guide
- Writing platform-specific code
- Auto-tuning guide
- Porting guide (añadir nueva platform)
-
Performance comparison (generic vs SSE vs AVX vs NEON)
-
Interfaces y Conexiones
PlatformDetector.get_capabilities()→ CapabilitySetPlatformOptimizer.select_backend(operation)→ BackendPlatformOptimizer.tune_for_hardware()→ TuningConfigPlatformOptimizer.benchmark_variants(variants)→ BenchmarkResults- Integration con vectorization_engine
- Foundation para todos los demás optimizations
ENTREGABLES: - [ ] CPU feature detector (x86, ARM) - [ ] Platform abstraction layer - [ ] Runtime dispatch system - [ ] Auto-tuning infrastructure - [ ] Tests >90% coverage en múltiples platforms - [ ] Documentación de platform support - [ ] Performance comparison report
ESTIMACIÓN: 2 semanas
TAREA 10: Profile-Guided Optimization - El Optimizador Inteligente¶
Carpeta: 05_06_09_profile_guided_optimization
Criticidad: ⭐⭐⭐⭐ (Alta - datos reales > guessing)
Prioridad: TIER 5 (necesita todo lo demás primero)
DESARROLLO:
- Core Implementation
- Instrumentation System:
- Code instrumenter (insertar counters sin mucho overhead)
- Branch coverage tracker (qué branches se toman más)
- Function call counter (qué funciones son hot)
- Cache miss tracker (lightweight sampling)
- Execution time profiler
- Profile Data Collector:
- Profile database (almacenar datos de múltiples runs)
- Data aggregator (combinar profiles de diferentes workloads)
- Profile viewer/analyzer
- Optimization Selector:
- Hot path identifier (código que consume 80% del tiempo)
- Cold code detector (código que casi nunca se ejecuta)
- Branch probability estimator (para prediction hints)
- Inline decision maker (inline funciones hot)
- Feedback Loop:
- Re-compilation trigger (cuando profile data cambia)
- A/B testing framework (comparar optimizaciones)
- Regression detector (optimización que empeora performance)
-
Continuous Profiling:
- Lightweight always-on profiling (overhead <1%)
- Periodic re-optimization
- Adaptive optimization (ajustar a workload real de usuario)
-
Testing Framework
- Instrumentation tests: Verificar overhead <5%
- Profile accuracy tests: Verificar que datos son correctos
- Optimization tests: PGO code >20% faster que non-PGO
- A/B testing: Verificar que mejor variante se selecciona
- Continuous profiling tests: Overhead <1% verificado
- Regression detection tests: Degradaciones detectadas
- Correctness tests: Optimizaciones preservan corrección
-
Test coverage >90%
-
Documentación
- PGO theory (por qué funciona)
- Instrumentation guide
- Creating representative workloads
- Profile data interpretation
- Continuous profiling setup
- A/B testing methodology
-
Case studies (real-world improvements)
-
Interfaces y Conexiones
PGO.instrument_code(code)→ Instrumented codePGO.collect_profile(run)→ ProfileDataPGO.optimize_with_profile(code, profile)→ Optimized codePGO.compare_variants(variant_a, variant_b)→ WinnerVariantPGO.enable_continuous_profiling()→ Profiling session- Integration con todos los demás optimizers (usa profile data)
- Symlink:
performance_metrics/ → ../18_QUALITY_METRICS/
ENTREGABLES: - [ ] Code instrumentation system - [ ] Profile data collector y analyzer - [ ] Profile-guided optimization pipeline - [ ] A/B testing framework - [ ] Continuous profiling system - [ ] Tests >90% coverage - [ ] Documentación completa - [ ] Case studies mostrando >20% improvement
ESTIMACIÓN: 3 semanas
TAREA 11: Regression Testing - El Guardián de Corrección¶
Carpeta: 05_06_10_regression_testing
Criticidad: ⭐⭐⭐⭐⭐ (Máxima - corrección es sacrosanta)
Prioridad: TIER 1 (primer subsistema a implementar)
DESARROLLO:
- Core Implementation
- Reference Implementation Manager:
- Non-optimized reference code builder (compilar sin optimizaciones)
- Bit-exact reference para integer operations
- High-precision reference para float operations (float64 o arbitrary precision)
- Comparison Engine:
- Sample-by-sample comparator
- Tolerance calculator (basado en tipo de operación)
- Difference metrics (max error, RMS error, SNR, THD+N)
- Visual diff generator (waveform comparison)
- Test Suite Manager:
- Synthetic signal generator (sines, impulses, noise, sweeps)
- Real audio loader (música, voz, various genres)
- Edge case generator (silence, DC, Nyquist, clipping, NaN, inf)
- Stress test generator (extreme values, long durations)
- Automation System:
- CI/CD integration (run tests on every commit)
- Test result database (histórico de resultados)
- Regression detector (alertar si tests fallan)
- Bisect support (encontrar commit que introdujo regression)
- Performance Regression Detection:
- Benchmark database (histórico de performance)
- Statistical analyzer (detectar degradaciones significativas)
- Alert system (notify si performance drop >10%)
-
Golden File System:
- Expected outputs storage
- Golden file updater (cuando optimización cambia output legítimamente)
- Diff viewer
-
Testing Framework
- Meta-tests: Tests de los tests (test framework correctness)
- Tolerance tests: Verificar que tolerancias son apropiadas
- Coverage tests: 100% de kernels optimizados tienen tests
- Performance tests: Test suite ejecuta en <5 minutos
- Correctness validation: Reference implementation vs optimized
- False positive tests: Tests no deben fallar en código correcto
-
Test coverage: >95% (crítico para regression testing)
-
Documentación
- Testing methodology
- Tolerance guidelines (cuándo usar qué tolerancia)
- Creating test cases
- Interpreting test failures
- Debugging regression failures
- Golden file management
-
CI/CD integration guide
-
Interfaces y Conexiones
RegressionTester.compare(reference, optimized, tolerance)→ TestResultRegressionTester.run_suite(test_suite)→ SuiteResultsRegressionTester.detect_regression(commit)→ RegressionReportRegressionTester.bisect_failure(start, end)→ Guilty commitRegressionTester.update_golden_files(test_id)→ Updated files- Integration con ALL optimization subsystems
- Symlink:
regression_tests/ → ../30_TESTING_FRAMEWORK/optimization_validation/
ENTREGABLES: - [ ] Reference implementation system - [ ] Comparison engine con múltiples métricas - [ ] Comprehensive test suite (synthetic + real audio) - [ ] CI/CD automation - [ ] Performance regression detector - [ ] Golden file system - [ ] Tests >95% coverage - [ ] Documentación completa - [ ] Zero false positives/negatives
ESTIMACIÓN: 2.5 semanas
TAREA FINAL-A: Integration Testing & Validation¶
Carpeta: 05_06_test_integration
Criticidad: ⭐⭐⭐⭐⭐ (Máxima)
DESARROLLO:
- End-to-End Test Suite
- Workflow test: Full optimization pipeline
- Input: Naive kernel → Vectorize → Loop optimize → Inline → Memory optimize → Branch optimize → Validate correctness → Success
- Workflow test: Multi-threaded topology
- Input: Topology graph → Analyze dependencies → Parallelize → Thread pool execute → Validate output == sequential → Success
- Workflow test: GPU offload
- Input: Convolution workload → Classify (GPU-suitable) → Generate CUDA kernel → Transfer data → Execute → Transfer back → Validate vs CPU → Success
- Workflow test: Profile-guided optimization
- Run: Instrument code → Collect profile → Identify hot paths → Apply targeted optimizations → Benchmark → Verify >20% improvement → Success
-
Workflow test: Platform-specific dispatch
- Run: Detect CPU features (AVX2) → Generate AVX2 code → Runtime dispatch → Execute → Validate vs generic → Verify faster → Success
-
Cross-Subsystem Validation
- Vectorization ↔ Memory Optimization: Verificar alignment correcto
- Loop Optimization ↔ Vectorization: Unrolled loops vectorizan bien
- Function Optimization ↔ Expression Optimization: Inlining expone CSE
- Parallel Execution ↔ Memory Optimization: NUMA awareness funciona
- GPU Acceleration ↔ All: GPU kernels matemáticamente correctos
- PGO ↔ All: Profile data guía todas las optimizaciones
-
Platform-specific ↔ All: Runtime dispatch funciona para todos
-
Regression Test Automation
- Test data fixtures: 1000+ kernels de prueba (todos los tipos DSP)
- Snapshot testing: DB de expected outputs
- Golden file testing: Audio files reference
- CI/CD matrix: Test en x86_64, ARM64, Windows, Linux, macOS
- Nightly builds: Full test suite cada noche
-
PR gating: Tests must pass antes de merge
-
Performance Validation Suite
- Benchmarks: Cada kernel optimizado vs naive (target: 5-10x)
- Vectorization coverage: >80% de loops críticos vectorizados
- Cache hit rate: >95% en L1 cache
- Multi-core scaling: 80%+ efficiency
- GPU speedup: >50x para batch workloads
-
Overall system: Real-world audio apps usan 50-70% menos CPU
-
Stress & Load Testing
- Concurrency stress: 100 threads simultáneos
- Memory stress: Procesar 10GB de audio sin leaks
- Duration stress: 24hr continuous processing
- Platform stress: Test en CPUs viejos (SSE2-only) y nuevos (AVX-512)
- Edge cases stress: NaN, inf, denormals, extreme gains
ENTREGABLES: - [ ] 5 end-to-end workflows tested - [ ] Cross-subsystem validation pasando - [ ] Regression suite automatizada (CI/CD) - [ ] Performance targets met (5-10x speedup) - [ ] Stress tests passing - [ ] Multi-platform validation
ESTIMACIÓN: 3 semanas
TAREA FINAL-B: System Integration¶
Carpeta: 05_06_interfaces
Criticidad: ⭐⭐⭐⭐ (Alta)
DESARROLLO:
- Conectores con subsistemas externos (según SYMLINKS)
kernel_implementations/ → ../04_KERNELS_L0/- Kernel loader (cargar kernels L0 para optimizar)
- Optimized kernel exporter (exportar versiones optimizadas)
topology_definitions/ → ../05_TOPOLOGY_DESIGN/- Topology importer (leer topology graphs)
- Dependency analyzer integration
- Optimized topology exporter
algorithm_specs/ → ../03_ALGORITHM_SPEC/- Mathematical spec validator (verificar que optimización preserva matemática)
performance_metrics/ → ../18_QUALITY_METRICS/- Benchmark data importer
- Profile data importer
- Performance report exporter
regression_tests/ → ../30_TESTING_FRAMEWORK/optimization_validation/- Test suite runner integration
- Test result reporter
optimized_code/ → ../27_IMPLEMENTATIONS/optimized/- Optimized code exporter
- Build integration
-
profile_data/ → ../18_QUALITY_METRICS/profiling/- Profile data sync
- Continuous profiling integration
-
Event Bus Implementation
- Event types:
OptimizationStarted,OptimizationCompleted,OptimizationFailedVectorizationSucceeded(loop_id, speedup),VectorizationFailed(loop_id, reason)RegressionDetected(test_id, expected, actual)PerformanceImproved(kernel_id, old_cycles, new_cycles)
- Pub/Sub pattern (in-memory event bus)
- Event persistence (audit log para debugging)
-
Webhook delivery (notify external systems)
-
Shared State Management
- Optimization configuration cache (global settings)
- Platform capability cache (detected features)
- Profile data cache (hot data in-memory)
- Benchmark results cache
-
Thread-safe access to all caches
-
Communication Protocols
- Internal API: Function calls (direct linking)
- External API: REST endpoints para monitoring/control
- Message format: JSON para configuration, binary para audio data
- Compiler integration: Compiler plugins/passes
ENTREGABLES: - [ ] 7 symlink connections funcionales - [ ] Event bus operational - [ ] Shared caches implemented - [ ] REST API para monitoring - [ ] Integration tests passing
ESTIMACIÓN: 2 semanas
TAREA FINAL-C: Documentation Package¶
Carpeta: 05_06_documentation
Criticidad: ⭐⭐⭐⭐ (Alta)
DESARROLLO:
- Complete API Reference
- C++ API: Doxygen-generated docs
- Optimization APIs: Cada subsistema documentado
- Code examples: 100+ snippets
-
Configuration reference: Todas las flags/knobs
-
Developer Guide
- Getting started: Setup optimization pipeline
- Architecture deep-dive: Cómo funciona cada optimizer
- Writing optimizable code: Best practices
- Debugging optimization issues
- Performance tuning guide
- Platform-specific programming
-
GPU programming guide
-
User Manual
- Installation guide (dependencies, build)
- Configuration guide (optimization levels, targets)
- Profiling guide (cómo obtener profile data)
- Benchmarking guide (medir improvements)
-
Troubleshooting FAQ
-
Theory Documentation
- SIMD programming theory
- Cache optimization theory
- Compiler optimization theory
- Parallel programming theory
- GPU architecture
-
Performance analysis methodology
-
Case Studies
- Reverb optimization: 100x speedup con GPU
- Filter bank optimization: 8x speedup con vectorización
- Synth voice optimization: 4x más voces con multi-threading
-
Real-world application: Audio plugin CPU usage 70% reducido
-
Architecture Diagrams
- System architecture (high-level)
- Optimization pipeline flow
- Vectorization process
- Memory hierarchy
- Multi-threading architecture
- GPU offload architecture
ENTREGABLES: - [ ] Complete API reference (Doxygen) - [ ] Developer guide (150+ páginas) - [ ] User manual (50+ páginas) - [ ] Theory documentation (100+ páginas) - [ ] 5+ case studies con benchmarks reales - [ ] 15+ architecture diagrams - [ ] Documentation site deployed
ESTIMACIÓN: 3 semanas
RESUMEN DE ESTIMACIONES¶
| Fase | Tareas | Duración Total | Parallelizable |
|---|---|---|---|
| TIER 1 - Foundation | T10, T8 | 4.5 semanas | Sí (2 devs) → 2.5 sem |
| TIER 2 - Core Optimizations | T1, T4, T3 | 8 semanas | Sí (3 devs) → 3 sem |
| TIER 3 - Advanced Optimizations | T2, T5, T6 | 6 semanas | Sí (3 devs) → 2.5 sem |
| TIER 4 - Parallel Execution | T7, T8 | 7 semanas | Sí (2 devs) → 4 sem |
| TIER 5 - Intelligent Optimization | T9 | 3 semanas | No → 3 sem |
| TIER 6 - Integration | FA, FB, FC | 8 semanas | Parcial (2 devs) → 5 sem |
TOTAL SECUENCIAL: ~36.5 semanas TOTAL PARALELO (3 devs): ~20 semanas (~5 meses)
CRITERIOS DE ÉXITO GLOBALES¶
Funcionalidad¶
- Vectorización funcional en SSE, AVX, NEON
- Loop optimizations aplicándose automáticamente
- Memory layout optimizado (cache hit rate >95%)
- Multi-threading con 80%+ efficiency
- GPU acceleration para workloads apropiados
- PGO pipeline completo
Performance¶
- Speedup general: 5-10x vs naive (Fase 2)
- Vectorization coverage: >80% loops críticos
- Multi-core scaling: 80%+ efficiency
- Cache efficiency: >95% L1 hits
- GPU speedup: >50x batch processing
- Real-world apps: 50-70% menos CPU usage
Calidad¶
- Test coverage >90% (promedio todos los subsistemas)
- 100% regression tests pasando
- 0 degradaciones de corrección
- Performance consistency <5% variation
- Platform portability: 5+ architectures
Usabilidad¶
- Optimizaciones 90% automáticas
- Developer intervention <10% casos
- Compilation time <5 minutos
- Clear error messages cuando optimización falla
- Comprehensive documentation
SYMLINKS NECESARIOS¶
# Conexión con kernels L0
🔗 kernel_implementations/ → ../04_KERNELS_L0/
# Conexión con topologías
🔗 topology_definitions/ → ../05_TOPOLOGY_DESIGN/
# Conexión con specs matemáticas
🔗 algorithm_specs/ → ../03_ALGORITHM_SPEC/
# Conexión con benchmarks
🔗 performance_metrics/ → ../18_QUALITY_METRICS/
# Conexión con tests
🔗 regression_tests/ → ../30_TESTING_FRAMEWORK/optimization_validation/
# Conexión con implementaciones
🔗 optimized_code/ → ../27_IMPLEMENTATIONS/optimized/
# Conexión con profiling
🔗 profile_data/ → ../18_QUALITY_METRICS/profiling/
ANTIPATTERNS A EVITAR¶
🚫 Premature optimization - Optimizar antes de tener código funcionando correctamente
🚫 Micro-optimization obsession - Optimizar loops irrelevantes mientras hot paths no-optimizados
🚫 Optimización sin profiling - Adivinar qué optimizar en vez de medir
🚫 Breaking correctness for speed - Optimización que produce output diferente es bug
🚫 Platform-specific code sin fallback - Código que solo funciona en CPU específico
🚫 Ignorar memory hierarchy - Optimizar CPU mientras cache thrashing domina
🚫 Over-threading - Más threads que cores (context switching overhead)
🚫 Optimización sin validación - No verificar que optimización preserva corrección
🚫 Magic numbers sin explicación - Hard-code valores sin documentar por qué
🚫 Optimización manual rígida - No usar auto-tuning para adaptación
🚫 Sin regression tests - Optimización nueva rompe edge cases silenciosamente
🚫 Ignorar diferentes workloads - Optimizar para caso promedio, pésimo en extremos
PRÓXIMOS PASOS¶
Este plan debe ejecutarse siguiendo el orden de TIERs para respetar dependencias técnicas. Se recomienda:
- Comenzar con TIER 1 (Regression Testing + Platform-Specific) - 2.5 semanas con 2 devs
- Continuar con TIER 2 (Vectorization + Expression + Memory) - 3 semanas con 3 devs
- Implementar TIER 3 (Loop + Branch + Function) - 2.5 semanas con 3 devs
- Expandir a TIER 4 (Parallel + GPU) - 4 semanas con 2 devs
- Implementar TIER 5 (PGO) - 3 semanas
- Finalizar con TIER 6 (Integration + Testing + Documentation) - 5 semanas con 2 devs
Timeline optimizado total: ~20 semanas con equipo de 3 desarrolladores especializados
Fase 1 (Optimizaciones Básicas): TIER 1 + TIER 2 = ~5.5 semanas → Speedup 2-4x Fase 2 (Optimizaciones Avanzadas): TIER 3 + TIER 4 = ~6.5 semanas → Speedup 5-10x Fase 3 (Optimización Extrema): TIER 5 + TIER 6 = ~8 semanas → Speedup 50-100x (GPU)