Skip to content

05_08_COMPONENT_PATTERNS - Plan de Desarrollo Detallado

INFORMACIÓN GENERAL

Subsistema: 05_08_COMPONENT_PATTERNS - Patrones de Diseño para Componentes DSP Reutilizables Criticidad: ⭐⭐⭐⭐ (Alta - Infraestructura compartida para todos los componentes) Equipo sugerido: 2 desarrolladores en paralelo Duración estimada: 8 semanas (paralelo) / 16 semanas (secuencial) Líneas de código estimadas: ~15,000 LOC (C++ core + tests + examples)


CONTEXTO Y ARQUITECTURA

05_08_COMPONENT_PATTERNS define patrones de diseño reutilizables que son comunes a todos los componentes DSP. En lugar de re-implementar parameter smoothing, oversampling, o modulation routing en cada componente, estos patrones proveen implementaciones optimizadas y RT-safe que se pueden composar.

Relación con otros subsistemas:

05_04_KERNELS_L0 (primitivas matemáticas)
05_07_ATOMS_L1 (componentes básicos)
05_08_COMPONENT_PATTERNS ← Usado por todos los layers
         ↓                  (patterns cross-cutting)
05_10_CELLS_L2 (componentes complejos)
05_13_ENGINES_L3 (sistemas completos)

6 Patrones Fundamentales: 1. Parameter Smoothing - Anti-zipper noise, transiciones suaves 2. State Management - Save/load state, serialization 3. Oversampling - 2x/4x/8x oversampling para anti-aliasing 4. Modulation Routing - Matrix de modulación (N sources → M destinations) 5. MIDI Mapping - MIDI CC → Parameter mapping 6. Preset System - Save/recall presets (complements 05_14)


ORGANIZACIÓN EN TIERS

TIER 1 - Base Pattern Infrastructure (Semanas 1-2)

  • TAREA 1: Pattern Base Classes & Utilities

TIER 2 - Core Patterns (Semanas 3-5)

  • TAREA 2: Parameter Smoothing Pattern
  • TAREA 3: State Management Pattern
  • TAREA 4: Oversampling Pattern

TIER 3 - Routing Patterns (Semanas 6-7)

  • TAREA 5: Modulation Routing Pattern
  • TAREA 6: MIDI Mapping Pattern

TIER 4 - High-Level Patterns (Semana 8)

  • TAREA 7: Preset System Pattern
  • TAREA 8: Integration Testing & Documentation

TAREAS DETALLADAS


TAREA 1: Pattern Base Classes & Utilities

Tier: 1 Archivos: 05_08_00_base_patterns/

Core Implementation:

  1. Pattern Interface (pattern_base.hpp)

    namespace audiolab::patterns {
    
    // Base class para todos los patterns
    class Pattern {
    public:
        virtual ~Pattern() = default;
        virtual void reset() = 0;
        virtual bool is_rt_safe() const = 0;
    };
    
    // Type traits para patterns
    template<typename T>
    struct is_pattern : std::is_base_of<Pattern, T> {};
    
    } // namespace
    

  2. Pattern Utilities (pattern_utils.hpp)

    namespace audiolab::patterns::utils {
    
    // Linear interpolation
    inline float lerp(float a, float b, float t) {
        return a + (b - a) * t;
    }
    
    // Exponential smoothing coefficient
    inline float exp_smoothing_coeff(float time_seconds, float sample_rate) {
        return std::exp(-1.0f / (time_seconds * sample_rate));
    }
    
    // dB to linear conversion
    inline float db_to_linear(float db) {
        return std::pow(10.0f, db / 20.0f);
    }
    
    // Clamp value to range
    template<typename T>
    inline T clamp(T value, T min_val, T max_val) {
        return std::max(min_val, std::min(max_val, value));
    }
    
    } // namespace
    

  3. RT-Safety Utilities (rt_safety.hpp)

    namespace audiolab::patterns::rt {
    
    // Stack allocator para RT-safe allocations
    template<size_t MaxBytes>
    class StackAllocator {
    public:
        void* allocate(size_t bytes);
        void deallocate(void* ptr);
    
    private:
        alignas(64) std::byte buffer_[MaxBytes];
        size_t used_ = 0;
    };
    
    // Lock-free ring buffer
    template<typename T, size_t Capacity>
    class LockFreeRingBuffer {
    public:
        bool push(const T& value);
        bool pop(T& value);
        size_t size() const;
    
    private:
        std::array<T, Capacity> buffer_;
        std::atomic<size_t> write_pos_{0};
        std::atomic<size_t> read_pos_{0};
    };
    
    } // namespace
    

Testing Framework:

  • Test: Pattern interface compliance
  • Test: RT-safety utilities (no allocations)
  • Test: Lock-free ring buffer correctness
  • Test: Stack allocator bounds checking

Documentation:

  • PATTERN_DESIGN_GUIDE.md - Cómo diseñar patterns
  • RT_SAFETY_GUIDE.md - RT-safety best practices

Entregables:

  • Pattern base classes
  • RT-safety utilities
  • Documentation
  • 100% tests passing

Estimación: 2 semanas (1 dev)


TAREA 2: Parameter Smoothing Pattern

Tier: 2 Archivos: 05_08_01_parameter_smoothing/

Core Implementation:

  1. Linear Smoother (linear_smoother.hpp)

    class LinearSmoother {
    public:
        void set_target(float value, int ramp_samples);
        float next_sample();
        bool is_settled() const;
        void jump_to_target();  // No smoothing
    
    private:
        float current_ = 0.0f;
        float target_ = 0.0f;
        float increment_ = 0.0f;
        int remaining_samples_ = 0;
    };
    

  2. Exponential Smoother (exponential_smoother.hpp)

    class ExponentialSmoother {
    public:
        void set_time_constant(float time_ms, float sample_rate);
        void set_target(float value);
        float next_sample();
        bool is_settled(float threshold = 0.001f) const;
    
    private:
        float current_ = 0.0f;
        float target_ = 0.0f;
        float coeff_ = 0.0f;  // Smoothing coefficient
    };
    

  3. Logarithmic Smoother (log_smoother.hpp)

    // Para parámetros logarítmicos (frequency, gain, etc.)
    class LogarithmicSmoother {
    public:
        void set_target(float value, int ramp_samples);
        void set_range(float min_val, float max_val);
        float next_sample();
    
    private:
        float current_linear_ = 0.0f;
        float target_linear_ = 0.0f;
        float increment_ = 0.0f;
        float min_value_ = 20.0f;
        float max_value_ = 20000.0f;
        int remaining_samples_ = 0;
    
        float to_linear(float log_value);
        float to_log(float linear_value);
    };
    

  4. Multi-Parameter Smoother (multi_smoother.hpp)

    class MultiParameterSmoother {
    public:
        void add_parameter(int id, SmootherType type);
        void set_target(int param_id, float value);
        void set_ramp_time(int param_id, int samples);
    
        float get_smoothed_value(int param_id);
        void process_block();  // Update all smoothers
    
    private:
        struct ParameterState {
            std::unique_ptr<ExponentialSmoother> smoother;
            SmootherType type;
        };
    
        std::unordered_map<int, ParameterState> parameters_;
    };
    

  5. Slew Rate Limiter (slew_limiter.hpp)

    // Limits rate of change (useful para modulation)
    class SlewRateLimiter {
    public:
        void set_max_rate(float units_per_second, float sample_rate);
        float process(float input);
    
    private:
        float current_ = 0.0f;
        float max_delta_per_sample_ = 0.0f;
    };
    

Testing Framework:

  • Test: Linear smoother accuracy (±0.001)
  • Test: Exponential smoother settling time
  • Test: Log smoother for frequency parameters
  • Test: Zipper noise measurement (<-100dB)
  • Test: Multi-parameter smoother coordination
  • Test: Slew limiter rate accuracy

Documentation:

  • SMOOTHING_GUIDE.md - Cuándo usar cada tipo
  • ZIPPER_NOISE_ANALYSIS.md - Análisis espectral

Examples:

// Example: Smooth gain changes
ExponentialSmoother gain_smoother;
gain_smoother.set_time_constant(10.0f, 48000.0f);  // 10ms
gain_smoother.set_target(db_to_linear(6.0f));      // +6dB

for (int i = 0; i < buffer_size; ++i) {
    float gain = gain_smoother.next_sample();
    output[i] = input[i] * gain;
}

Entregables:

  • 5 smoother types implementados
  • Multi-parameter smoother
  • Zipper noise tests
  • Documentation y examples
  • 100% tests passing

Estimación: 1.5 semanas (1 dev)


TAREA 3: State Management Pattern

Tier: 2 Archivos: 05_08_02_state_management/

Core Implementation:

  1. State Serializer (state_serializer.hpp)

    class StateSerializer {
    public:
        // Serialize to binary
        std::vector<uint8_t> serialize(const void* data, size_t size);
    
        // Deserialize from binary
        bool deserialize(const std::vector<uint8_t>& data, void* output, size_t size);
    
        // Versioning
        void set_version(uint32_t version);
        uint32_t get_version() const;
    
    private:
        uint32_t version_ = 1;
    };
    

  2. Parameter State (parameter_state.hpp)

    struct ParameterValue {
        int id;
        float value;
        float default_value;
        float min_value;
        float max_value;
    };
    
    class ParameterState {
    public:
        void add_parameter(int id, float default_val, float min, float max);
        void set_value(int id, float value);
        float get_value(int id) const;
    
        // Serialization
        std::vector<uint8_t> serialize() const;
        bool deserialize(const std::vector<uint8_t>& data);
    
        // Presets
        void save_preset(const std::string& name);
        bool load_preset(const std::string& name);
    
    private:
        std::unordered_map<int, ParameterValue> parameters_;
        std::map<std::string, std::vector<uint8_t>> presets_;
    };
    

  3. Component State (component_state.hpp)

    class ComponentState {
    public:
        // Generic state management
        void register_float_state(const std::string& key, float& variable);
        void register_int_state(const std::string& key, int& variable);
        void register_bool_state(const std::string& key, bool& variable);
    
        // Save/load
        std::string save_to_xml();
        std::string save_to_json();
        bool load_from_xml(const std::string& xml);
        bool load_from_json(const std::string& json);
    
    private:
        struct StateVariable {
            enum class Type { FLOAT, INT, BOOL };
            Type type;
            void* ptr;
        };
    
        std::map<std::string, StateVariable> state_variables_;
    };
    

  4. DAW State Chunk (daw_state.hpp)

    // Compatible con DAWs (VST, AU, AAX)
    class DAWStateChunk {
    public:
        void set_parameter_state(const ParameterState& params);
        void set_component_state(const ComponentState& state);
    
        // DAW format
        std::vector<uint8_t> get_chunk() const;
        bool set_chunk(const std::vector<uint8_t>& chunk);
    
        // Versioning for backwards compatibility
        void set_schema_version(uint32_t version);
        bool is_compatible(uint32_t version) const;
    
    private:
        ParameterState params_;
        ComponentState state_;
        uint32_t schema_version_ = 1;
    };
    

  5. State Diff (state_diff.hpp)

    // Para undo/redo systems
    class StateDiff {
    public:
        void capture_state(const ParameterState& state);
        ParameterState compute_diff(const ParameterState& new_state);
        ParameterState apply_diff(const ParameterState& base_state);
    
    private:
        struct ParameterChange {
            int id;
            float old_value;
            float new_value;
        };
    
        std::vector<ParameterChange> changes_;
    };
    

Testing Framework:

  • Test: Serialization roundtrip (binary, XML, JSON)
  • Test: Version compatibility (forward/backward)
  • Test: Large state performance (<10ms save/load)
  • Test: Diff computation correctness
  • Test: DAW chunk format validation

Documentation:

  • STATE_MANAGEMENT_GUIDE.md
  • VERSIONING_STRATEGY.md
  • DAW_INTEGRATION_GUIDE.md

Entregables:

  • State serialization (binary, XML, JSON)
  • Parameter state management
  • DAW chunk format
  • State diff for undo/redo
  • 100% tests passing

Estimación: 2 semanas (1 dev)


TAREA 4: Oversampling Pattern

Tier: 2 Archivos: 05_08_03_oversampling/

Core Implementation:

  1. Oversampler Base (oversampler.hpp)

    enum class OversamplingFactor {
        X2,
        X4,
        X8,
        X16
    };
    
    class Oversampler {
    public:
        void set_factor(OversamplingFactor factor);
        void set_sample_rate(float sr);
    
        // Upsample input → process → downsample
        void process(const float* input, float* output, int num_samples,
                     std::function<void(float*, int)> process_fn);
    
    private:
        OversamplingFactor factor_ = OversamplingFactor::X2;
        float sample_rate_ = 48000.0f;
    };
    

  2. FIR Oversampler (fir_oversampler.hpp)

    class FIROversampler : public Oversampler {
    public:
        void design_filter(float transition_bandwidth = 0.1f);
        void upsample(const float* input, float* output, int num_samples);
        void downsample(const float* input, float* output, int num_samples);
    
    private:
        std::vector<float> fir_coefficients_;
        std::vector<float> upsampled_buffer_;
        std::vector<float> state_;  // Filter state
    };
    

  3. IIR Oversampler (iir_oversampler.hpp)

    // Más efficient que FIR para algunos casos
    class IIROversampler : public Oversampler {
    public:
        void design_elliptic_filter(float passband_ripple_db = 0.1f,
                                     float stopband_attenuation_db = 100.0f);
    
        void upsample(const float* input, float* output, int num_samples);
        void downsample(const float* input, float* output, int num_samples);
    
    private:
        struct BiquadSection {
            float b0, b1, b2, a1, a2;
            float z1 = 0.0f, z2 = 0.0f;
        };
    
        std::vector<BiquadSection> upsampling_filter_;
        std::vector<BiquadSection> downsampling_filter_;
        std::vector<float> upsampled_buffer_;
    };
    

  4. Polyphase Oversampler (polyphase_oversampler.hpp)

    // Most efficient para real-time
    class PolyphaseOversampler : public Oversampler {
    public:
        void design_polyphase_filter(int num_taps_per_phase);
    
        void upsample(const float* input, float* output, int num_samples);
        void downsample(const float* input, float* output, int num_samples);
    
    private:
        int factor_ = 2;
        int num_phases_ = 2;
        std::vector<std::vector<float>> polyphase_filters_;
        std::vector<float> state_;
    };
    

  5. Oversampling Utilities (oversampling_utils.hpp)

    namespace oversampling {
    
    // Design Butterworth lowpass
    std::vector<float> design_butterworth_lpf(int order, float cutoff_normalized);
    
    // Design Chebyshev Type I
    std::vector<float> design_chebyshev_lpf(int order, float cutoff, float ripple_db);
    
    // Measure aliasing
    float measure_aliasing(const float* signal, int length, float sample_rate);
    
    } // namespace
    

Testing Framework:

  • Test: Aliasing suppression (>100dB @ Nyquist/2)
  • Test: Frequency response (passband ±0.1dB)
  • Test: Phase linearity (group delay variation)
  • Test: Performance (CPU overhead <50%)
  • Test: Roundtrip accuracy (input ≈ output sin processing)

Documentation:

  • OVERSAMPLING_GUIDE.md - Cuándo y por qué oversample
  • FILTER_DESIGN.md - FIR vs IIR vs Polyphase
  • ALIASING_ANALYSIS.md - Análisis espectral

Examples:

// Example: Oversample distortion to reduce aliasing
PolyphaseOversampler oversampler;
oversampler.set_factor(OversamplingFactor::X4);
oversampler.design_polyphase_filter(64);

oversampler.process(input, output, num_samples, [&](float* buffer, int length) {
    // Process at 4x sample rate
    for (int i = 0; i < length; ++i) {
        buffer[i] = std::tanh(buffer[i] * drive);
    }
});

Entregables:

  • FIR, IIR, Polyphase oversamplers
  • 2x, 4x, 8x, 16x factors
  • Filter design utilities
  • Aliasing measurement tools
  • 100% tests passing

Estimación: 2.5 semanas (1 dev)


TAREA 5: Modulation Routing Pattern

Tier: 3 Archivos: 05_08_04_modulation_routing/

Core Implementation:

  1. Modulation Matrix (mod_matrix.hpp)

    class ModulationMatrix {
    public:
        // Connect source to destination with depth
        void connect(int source_id, int dest_param_id, float depth);
        void disconnect(int source_id, int dest_param_id);
        void set_depth(int source_id, int dest_param_id, float depth);
    
        // Register modulation sources
        void register_source(int id, const std::string& name);
        void set_source_value(int id, float value);  // -1 to 1 or 0 to 1
    
        // Apply modulation
        float get_modulated_value(int param_id, float base_value);
    
    private:
        struct Connection {
            int source_id;
            int dest_param_id;
            float depth;
        };
    
        std::vector<Connection> connections_;
        std::unordered_map<int, float> source_values_;
        std::unordered_map<int, std::string> source_names_;
    };
    

  2. Modulation Source (mod_source.hpp)

    class ModulationSource {
    public:
        virtual ~ModulationSource() = default;
        virtual float get_value() const = 0;
        virtual bool is_bipolar() const = 0;  // -1..1 vs 0..1
        virtual const char* get_name() const = 0;
    };
    
    // Common sources
    class LFOModSource : public ModulationSource {
    public:
        void set_lfo(LFO* lfo);
        float get_value() const override;
        bool is_bipolar() const override { return true; }
    };
    
    class EnvelopeModSource : public ModulationSource {
    public:
        void set_envelope(Envelope* env);
        float get_value() const override;
        bool is_bipolar() const override { return false; }  // 0..1
    };
    

  3. Modulation Target (mod_target.hpp)

    struct ModulationRange {
        float min_value;
        float max_value;
        float skew_factor = 1.0f;  // Para mapeo logarítmico
    };
    
    class ModulationTarget {
    public:
        void set_base_value(float value);
        void set_range(const ModulationRange& range);
    
        float apply_modulation(float mod_amount);  // -1..1 or 0..1
    
    private:
        float base_value_ = 0.5f;
        ModulationRange range_{0.0f, 1.0f, 1.0f};
    
        float apply_skew(float normalized_value);
    };
    

  4. Mod Matrix with Crossfading (crossfade_mod.hpp)

    class CrossfadingModMatrix : public ModulationMatrix {
    public:
        // Smooth parameter changes (no zippers)
        void set_connection_with_crossfade(int source_id, int dest_id, float new_depth, float fade_time_ms);
    
        void process_crossfades(int num_samples);
    
    private:
        struct CrossfadeState {
            float current_depth;
            float target_depth;
            ExponentialSmoother smoother;
        };
    
        std::map<std::pair<int,int>, CrossfadeState> crossfades_;
    };
    

  5. Modulation Presets (mod_presets.hpp)

    struct ModulationPreset {
        std::string name;
        std::vector<Connection> connections;
    
        std::string to_json() const;
        static ModulationPreset from_json(const std::string& json);
    };
    
    class ModulationPresetBank {
    public:
        void add_preset(const ModulationPreset& preset);
        const ModulationPreset& get_preset(const std::string& name) const;
        void apply_preset(ModulationMatrix& matrix, const std::string& name);
    
    private:
        std::map<std::string, ModulationPreset> presets_;
    };
    

Testing Framework:

  • Test: Connection routing correctness
  • Test: Bipolar/unipolar mapping
  • Test: Range mapping con skew
  • Test: Crossfading smoothness
  • Test: Many-to-many routing (8 sources → 32 destinations)

Documentation:

  • MODULATION_GUIDE.md
  • MOD_MATRIX_PATTERNS.md - Patrones comunes
  • CROSSFADING_THEORY.md

Examples:

// Example: LFO modula filter cutoff
ModulationMatrix matrix;

// Register sources
matrix.register_source(0, "LFO 1");
matrix.register_source(1, "Envelope 1");

// Connect LFO → Cutoff con 50% depth
matrix.connect(0, PARAM_CUTOFF, 0.5f);

// Update en audio loop
lfo.process(buffer);
matrix.set_source_value(0, lfo.get_value());

float cutoff_base = 1000.0f;
float cutoff_modulated = matrix.get_modulated_value(PARAM_CUTOFF, cutoff_base);

Entregables:

  • Modulation matrix (N→M routing)
  • Source/target abstractions
  • Crossfading support
  • Preset system
  • 100% tests passing

Estimación: 2 semanas (1 dev)


TAREA 6: MIDI Mapping Pattern

Tier: 3 Archivos: 05_08_05_midi_mapping/

Core Implementation:

  1. MIDI Mapper (midi_mapper.hpp)

    class MIDIMapper {
    public:
        // Map MIDI CC to parameter
        void map_cc(int cc_number, int param_id);
        void unmap_cc(int cc_number);
    
        // Process MIDI messages
        void process_midi_message(const uint8_t* message, int length);
    
        // Get mapped parameter values (0-1 normalized)
        float get_parameter_value(int param_id) const;
    
        // MIDI learn mode
        void start_learn(int param_id);
        void stop_learn();
    
    private:
        struct CCMapping {
            int cc_number;
            int param_id;
            float current_value;  // 0-1
        };
    
        std::vector<CCMapping> mappings_;
        int learn_param_id_ = -1;
    };
    

  2. MIDI CC Types (midi_cc_types.hpp)

    namespace midi {
    
    // Standard MIDI CC numbers
    enum class CC {
        MOD_WHEEL = 1,
        BREATH = 2,
        FOOT = 4,
        VOLUME = 7,
        PAN = 10,
        EXPRESSION = 11,
        SUSTAIN_PEDAL = 64,
        // ... more
    };
    
    // 14-bit CC support (CC #0-31 + 32-63)
    class HighResCC {
    public:
        void set_msb(uint8_t value);  // CC 0-31
        void set_lsb(uint8_t value);  // CC 32-63
        float get_normalized() const;  // 0-1, 14-bit precision
    
    private:
        uint8_t msb_ = 0;
        uint8_t lsb_ = 0;
    };
    
    } // namespace
    

  3. Parameter Range Mapping (param_range.hpp)

    struct ParameterMapping {
        int param_id;
        float min_value;
        float max_value;
        float skew_factor = 1.0f;
        bool invert = false;
    };
    
    class ParameterRangeMapper {
    public:
        void set_mapping(int param_id, const ParameterMapping& mapping);
    
        // Convert MIDI (0-127) → Parameter value
        float midi_to_parameter(int param_id, uint8_t midi_value);
    
        // Convert Parameter → MIDI (for feedback)
        uint8_t parameter_to_midi(int param_id, float param_value);
    
    private:
        std::unordered_map<int, ParameterMapping> mappings_;
    };
    

  4. MIDI Learn System (midi_learn.hpp)

    class MIDILearnSystem {
    public:
        void start_learning(int param_id);
        void cancel_learning();
    
        bool process_midi_message(const uint8_t* message, int length);
    
        // Get learned mapping
        struct LearnedMapping {
            int cc_number;
            int param_id;
            bool successful;
        };
        LearnedMapping get_last_learned() const;
    
    private:
        int learning_param_id_ = -1;
        LearnedMapping last_learned_;
    };
    

  5. MIDI Mapping Presets (midi_presets.hpp)

    struct MIDIMappingPreset {
        std::string name;
        std::vector<std::pair<int, int>> cc_to_param;  // CC# → Param ID
    
        std::string to_json() const;
        static MIDIMappingPreset from_json(const std::string& json);
    };
    
    class MIDIMappingBank {
    public:
        void add_preset(const MIDIMappingPreset& preset);
        void apply_preset(MIDIMapper& mapper, const std::string& name);
    
        // Common presets
        static MIDIMappingPreset create_general_midi_preset();
        static MIDIMappingPreset create_mackie_control_preset();
    
    private:
        std::map<std::string, MIDIMappingPreset> presets_;
    };
    

Testing Framework:

  • Test: CC mapping correctness (0-127 → 0-1)
  • Test: 14-bit CC precision
  • Test: Parameter range mapping con skew
  • Test: MIDI learn workflow
  • Test: Preset load/save

Documentation:

  • MIDI_MAPPING_GUIDE.md
  • MIDI_LEARN_TUTORIAL.md
  • MIDI_CC_REFERENCE.md - Lista de CCs comunes

Examples:

// Example: Map mod wheel to filter cutoff
MIDIMapper mapper;
mapper.map_cc(1, PARAM_CUTOFF);  // CC #1 = Mod Wheel

// Process MIDI
uint8_t midi_msg[] = {0xB0, 0x01, 0x64};  // CC #1, value 100
mapper.process_midi_message(midi_msg, 3);

// Get parameter value (0-1)
float cutoff_normalized = mapper.get_parameter_value(PARAM_CUTOFF);

Entregables:

  • MIDI CC → Parameter mapping
  • 14-bit CC support
  • MIDI learn system
  • Mapping presets
  • 100% tests passing

Estimación: 1.5 semanas (1 dev)


TAREA 7: Preset System Pattern

Tier: 4 Archivos: 05_08_06_preset_system/

Core Implementation:

  1. Preset Data Structure (preset.hpp)

    struct Preset {
        std::string name;
        std::string author;
        std::string category;
        std::string description;
        std::vector<std::string> tags;
    
        std::map<int, float> parameter_values;
        std::vector<uint8_t> custom_state;  // Binary blob
    
        std::string to_json() const;
        static Preset from_json(const std::string& json);
    };
    

  2. Preset Bank (preset_bank.hpp)

    class PresetBank {
    public:
        void add_preset(const Preset& preset);
        const Preset& get_preset(const std::string& name) const;
    
        // Search/filter
        std::vector<std::string> find_by_category(const std::string& category);
        std::vector<std::string> find_by_tag(const std::string& tag);
        std::vector<std::string> search(const std::string& query);
    
        // File I/O
        void load_from_directory(const std::filesystem::path& dir);
        void save_to_directory(const std::filesystem::path& dir);
    
    private:
        std::map<std::string, Preset> presets_;
    };
    

  3. Preset Morphing (preset_morph.hpp)

    class PresetMorpher {
    public:
        void set_preset_a(const Preset& a);
        void set_preset_b(const Preset& b);
    
        // Morph factor: 0 = preset A, 1 = preset B
        Preset morph(float factor);
    
        // Animated morphing
        void start_morph(const Preset& target, float duration_seconds);
        void update(float delta_time);
        Preset get_current_preset() const;
    
    private:
        Preset preset_a_;
        Preset preset_b_;
        Preset current_;
        float morph_factor_ = 0.0f;
        float morph_duration_ = 0.0f;
        float morph_elapsed_ = 0.0f;
    };
    

  4. Preset Randomizer (preset_randomizer.hpp)

    class PresetRandomizer {
    public:
        // Randomize all parameters
        Preset randomize_all(const Preset& base);
    
        // Randomize specific parameters
        Preset randomize_partial(const Preset& base, const std::vector<int>& param_ids);
    
        // Constrained randomization (keep some params fixed)
        void lock_parameter(int param_id);
        void unlock_parameter(int param_id);
    
        Preset generate_random();
    
    private:
        std::set<int> locked_params_;
        std::mt19937 rng_;
    };
    

  5. Preset Favorites (preset_favorites.hpp)

    class PresetFavorites {
    public:
        void add_favorite(const std::string& preset_name);
        void remove_favorite(const std::string& preset_name);
        bool is_favorite(const std::string& preset_name) const;
    
        std::vector<std::string> get_favorites() const;
    
        // Persistence
        void save_to_file(const std::filesystem::path& path);
        void load_from_file(const std::filesystem::path& path);
    
    private:
        std::set<std::string> favorites_;
    };
    

Testing Framework:

  • Test: Preset serialization (JSON roundtrip)
  • Test: Bank search/filter correctness
  • Test: Morph interpolation accuracy
  • Test: Randomizer distribution uniformity
  • Test: Favorites persistence

Documentation:

  • PRESET_SYSTEM_GUIDE.md
  • PRESET_FORMAT_SPEC.md - JSON schema
  • MORPHING_GUIDE.md

Examples:

// Example: Load and apply preset
PresetBank bank;
bank.load_from_directory("presets/");

Preset lead_preset = bank.get_preset("Screaming Lead");

for (auto& [param_id, value] : lead_preset.parameter_values) {
    set_parameter(param_id, value);
}

Entregables:

  • Preset data structures
  • Preset bank (search, filter)
  • Preset morphing
  • Randomizer
  • Favorites system
  • 100% tests passing

Estimación: 1.5 semanas (1 dev)


TAREA 8: Integration Testing & Documentation

Tier: 4 Archivos: 05_08_test_integration/, 05_08_documentation/

Integration Tests:

  1. End-to-End Pattern Composition

    TEST_CASE("Complete workflow: Smoothing + Modulation + MIDI") {
        // Setup
        MultiParameterSmoother smoother;
        ModulationMatrix mod_matrix;
        MIDIMapper midi_mapper;
    
        // Configure
        smoother.add_parameter(PARAM_CUTOFF, SmootherType::EXPONENTIAL);
        mod_matrix.register_source(0, "LFO 1");
        midi_mapper.map_cc(1, PARAM_CUTOFF);
    
        // Process
        // 1. MIDI updates base value
        // 2. Modulation applies LFO
        // 3. Smoothing prevents zippers
    
        // Verify
        REQUIRE(output_is_smooth());
        REQUIRE(no_zipper_noise());
    }
    

  2. Performance Benchmarks

    void benchmark_all_patterns() {
        // Parameter smoothing overhead
        benchmark_smoother();  // Target: <0.1% CPU
    
        // Oversampling overhead
        benchmark_oversampler();  // Target: <50% for 4x
    
        // Modulation matrix
        benchmark_mod_matrix();  // Target: <1% CPU para 8x32 matrix
    
        // MIDI mapper
        benchmark_midi_mapper();  // Target: <0.01% CPU
    }
    

Documentation:

  1. Pattern Catalog (PATTERN_CATALOG.md)
  2. Descripción de cada pattern
  3. Cuándo usar cada uno
  4. Casos de uso comunes
  5. Antipatterns a evitar

  6. Integration Guide (INTEGRATION_GUIDE.md)

  7. Cómo combinar patterns
  8. Best practices
  9. Performance considerations

  10. Examples Collection

  11. 10+ ejemplos completos
  12. Simple synth usando todos los patterns
  13. Effect processor con oversampling + modulation
  14. MIDI-controlled filter con smoothing

Entregables:

  • 20+ integration tests
  • Performance benchmarks
  • Pattern catalog
  • Integration guide
  • 10+ examples

Estimación: 1 semana (1 dev)


RESUMEN DE ESTIMACIONES

Tier Tareas Tiempo (secuencial) Tiempo (paralelo 2 devs)
1 1 (Base) 2 semanas 2 semanas
2 3 (Core Patterns) 6 semanas 3 semanas
3 2 (Routing) 3.5 semanas 2 semanas
4 2 (High-level) 2.5 semanas 1.5 semanas
TOTAL 8 tareas 16 semanas 8 semanas

MÉTRICAS DE ÉXITO

Métrica Target Medición
Parameter Smoothing Zipper noise <-100dB Spectral analysis
Oversampling Aliasing suppression >100dB Spectral analysis
Modulation Matrix <1% CPU (8x32 matrix) Profiling
MIDI Mapper Latency <1ms Timing tests
Test Coverage >95% gcov/lcov
Documentation 100% patterns documented Review

DEPENDENCIAS CRÍTICAS

TIER 1 (Base Infrastructure)
TIER 2 (Core Patterns: Smoothing, State, Oversampling) ← Can run in parallel
TIER 3 (Routing: Modulation, MIDI) ← Can run in parallel
TIER 4 (High-level: Presets, Documentation)

CONEXIONES CON OTROS SUBSISTEMAS

Consume: - 05_04_KERNELS_L0 - Math primitives (filters, conversions) - 05_07_ATOMS_L1 - Processor interface

Usado por (critical cross-cutting): - 05_07_ATOMS_L1 - Atoms usan smoothing, state management - 05_10_CELLS_L2 - Cells usan modulation, presets - 05_13_ENGINES_L3 - Engines usan oversampling, MIDI

Integra con: - 05_14_PRESET_SYSTEM - Global preset management - 05_09_FACTORY_SYSTEM - Pattern instantiation


NOTAS FINALES

05_08_COMPONENT_PATTERNS es infraestructura crítica compartida por todos los componentes DSP. Invertir aquí evita duplicación de código y asegura consistencia en calidad y performance.

ROI Esperado: - Dev time savings: 30% reduction (no re-implement smoothing, oversampling, etc.) - Quality improvement: Consistent behavior across all components - Maintenance: Fix bugs once, benefits all components

Próximos pasos: Una vez completado 05_08, continuar con 05_09_FACTORY_SYSTEM o 05_10_CELLS_L2.


Documento creado: 2025-10-10 Versión: 1.0 Autor: AudioLab Architecture Team Estado: 🔄 READY FOR IMPLEMENTATION