Skip to content

05_11_08_parallel_processing - Procesamiento Paralelo

Estado: πŸ“‹ Pendiente Prioridad: ALTA EstimaciΓ³n: 6-8 semanas Dependencias: 00_graph_core, 02_topological_sorting


🎯 PROPΓ“SITO

El Parallel Processing identifica y ejecuta ramas independientes del grafo simultΓ‘neamente para mejor utilizaciΓ³n de CPU multi-core:

  • πŸš€ Detecta branches paralelas automΓ‘ticamente
  • πŸš€ Thread pool con work stealing
  • πŸš€ SIMD processing de branches similares
  • πŸš€ 3-4x speedup tΓ­pico en 8-core

Sin paralelizaciΓ³n: 100% de 1 core, resto idle Con paralelizaciΓ³n: 75% de 4+ cores, throughput masivo


πŸ“ COMPONENTES

1. Parallel Branch Detector

class ParallelDetector {
    struct ParallelGroup {
        std::vector<NodeID> nodes;
        int level;  // Dependency level
        bool canProcessInParallel;
    };

    std::vector<ParallelGroup> detectParallelBranches(const AudioGraph& graph);
};

Algorithm: 1. Group nodes by dependency level 2. Within each level, check for inter-dependencies 3. Nodes at same level with no paths between them β†’ parallel

2. Thread Pool

class ThreadPool {
    std::vector<std::thread> workers;
    std::queue<std::function<void()>> tasks;
    std::mutex queueMutex;
    std::condition_variable condition;

    void enqueue(std::function<void()> task);
    void waitAll();
};

Features: - Pre-allocated worker threads - Lock-free task queue (optional) - Work stealing for load balance - Thread-local storage for cache efficiency

3. Parallel Graph Executor

class ParallelGraphExecutor {
    ThreadPool threadPool;
    std::vector<ParallelBranch> branches;

    void identifyParallelBranches(const AudioGraph& graph);
    void processParallel();
};

Execution Strategy: 1. Launch parallel branches on separate threads 2. Wait for all to complete (barrier) 3. Process serial dependencies 4. Repeat

4. SIMD Branch Processing

// Process 8 mono channels with single SIMD instruction
__m256 input = _mm256_load_ps(inputs);
__m256 output = processAVX(input, params);
_mm256_store_ps(outputs, output);

Requirements: - Identical processing algorithm - Same parameters (or batch) - Aligned memory (32-byte)

5. Work Stealing Scheduler

class WorkStealingScheduler {
    std::vector<std::deque<Task>> perThreadQueues;

    void enqueue(Task task);
    Task steal();  // From other thread's queue
};

Benefit: Dynamic load balancing - Busy threads steal work from idle threads - Minimizes idle time - Adapts to varying node complexity


πŸ“‚ ESTRUCTURA

05_11_08_parallel_processing/
β”œβ”€β”€ include/
β”‚   β”œβ”€β”€ ParallelDetector.h
β”‚   β”œβ”€β”€ ThreadPool.h
β”‚   β”œβ”€β”€ ParallelGraphExecutor.h
β”‚   β”œβ”€β”€ SIMDProcessor.h
β”‚   └── WorkStealingScheduler.h
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ ParallelDetector.cpp
β”‚   β”œβ”€β”€ ThreadPool.cpp
β”‚   β”œβ”€β”€ ParallelGraphExecutor.cpp
β”‚   β”œβ”€β”€ SIMDProcessor.cpp
β”‚   └── WorkStealingScheduler.cpp
β”œβ”€β”€ tests/
β”‚   β”œβ”€β”€ test_parallel_detection.cpp
β”‚   β”œβ”€β”€ test_thread_pool.cpp
β”‚   β”œβ”€β”€ test_parallel_execution.cpp
β”‚   β”œβ”€β”€ test_simd_processing.cpp
β”‚   └── test_correctness.cpp        # Serial vs Parallel match
β”œβ”€β”€ examples/
β”‚   β”œβ”€β”€ parallel_effects.cpp
β”‚   β”œβ”€β”€ multiband_parallel.cpp
β”‚   └── benchmarks.cpp
└── docs/
    β”œβ”€β”€ PARALLELIZATION_THEORY.md
    β”œβ”€β”€ PERFORMANCE_ANALYSIS.md
    └── TUNING_GUIDE.md

🎯 ENTREGABLES

  • ParallelDetector implementation
  • ThreadPool implementation
  • ParallelGraphExecutor
  • SIMD optimizations
  • Work stealing scheduler
  • 15+ unit tests
  • Performance benchmarks on 2/4/8 cores
  • Scalability analysis
  • Thread-safety documentation
  • Optimization guide

πŸ“Š MΓ‰TRICAS DE Γ‰XITO

Speedup (vs serial execution)

  • βœ… 2-core: 1.8x tΓ­pico (90% efficiency)
  • βœ… 4-core: 3.0x tΓ­pico (75% efficiency)
  • βœ… 8-core: 5.0x tΓ­pico (62% efficiency)

Scalability

  • βœ… Linear hasta 4 cores
  • βœ… Sub-linear pero positivo 4-8 cores
  • βœ… Diminishing returns >8 cores (dependencies)

Overhead

  • βœ… <5% overhead vs optimal hand-tuned
  • βœ… Thread creation: One-time at startup
  • βœ… Sync overhead: <1% of processing time

Correctness

  • βœ… Bit-exact match with serial execution
  • βœ… Deterministic output (given same input)
  • βœ… Zero data races (Valgrind/TSan clean)

πŸ“ˆ EXPECTED PERFORMANCE

Graph with 40% parallelizable work

Amdahl's Law: Speedup = 1 / ((1-P) + P/N)

Cores   Theoretical   Typical   Efficiency
  1        1.0x        1.0x       100%
  2        1.43x       1.3x        65%
  4        1.82x       1.6x        40%
  8        2.11x       1.8x        22%

Graph with 80% parallelizable work

Cores   Theoretical   Typical   Efficiency
  1        1.0x        1.0x       100%
  2        1.82x       1.7x        85%
  4        3.08x       2.6x        65%
  8        4.71x       3.8x        47%

Factors affecting real-world performance: - Dependency density - Node complexity variance - Cache effects - Sync overhead - Memory bandwidth


πŸ§ͺ BENCHMARKS

Test Scenarios

  1. Diamond Graph
    Input β†’ Split β†’ [Path A, Path B] β†’ Merge β†’ Output
    
  2. Expected: 1.9x on 2-core
  3. Work: 50% parallelizable

  4. Multi-Band Processor

    Input β†’ Split β†’ [Band1, Band2, Band3, Band4] β†’ Merge β†’ Output
    

  5. Expected: 3.5x on 4-core
  6. Work: 90% parallelizable

  7. Effect Rack

    Input β†’ [Reverb, Delay, Chorus, Flanger] β†’ Mix β†’ Output
    

  8. Expected: 3.8x on 4-core
  9. Work: 95% parallelizable

πŸ’‘ OPTIMIZATION TIPS

When Parallelization Helps

βœ… Multiple independent branches βœ… CPU-heavy nodes (convolution, FFT) βœ… Similar-cost nodes (balanced load) βœ… Sufficient work per node (>100ΞΌs)

When Parallelization Hurts

❌ Mostly serial dependencies ❌ Very fast nodes (<10μs each) ❌ Highly imbalanced load ❌ Memory-bound processing

Best Practices

  • Group small nodes into larger chunks
  • Balance work across threads
  • Minimize sync points
  • Use thread-local storage
  • Align data for SIMD

πŸ”§ CONFIGURATION

ParallelGraphExecutor executor;

// Thread count (0 = auto-detect)
executor.setThreadCount(4);

// Enable/disable features
executor.enableWorkStealing(true);
executor.enableSIMD(true);

// Tuning
executor.setMinNodeCostForParallel(100);  // ΞΌs
executor.setMaxThreads(8);

Creado: 2025-10-14 VersiΓ³n: 1.0.0