05_11_08_parallel_processing - Procesamiento Paralelo¶
Estado: π Pendiente Prioridad: ALTA EstimaciΓ³n: 6-8 semanas Dependencias: 00_graph_core, 02_topological_sorting
π― PROPΓSITO¶
El Parallel Processing identifica y ejecuta ramas independientes del grafo simultΓ‘neamente para mejor utilizaciΓ³n de CPU multi-core:
- π Detecta branches paralelas automΓ‘ticamente
- π Thread pool con work stealing
- π SIMD processing de branches similares
- π 3-4x speedup tΓpico en 8-core
Sin paralelizaciΓ³n: 100% de 1 core, resto idle Con paralelizaciΓ³n: 75% de 4+ cores, throughput masivo
π COMPONENTES¶
1. Parallel Branch Detector¶
class ParallelDetector {
struct ParallelGroup {
std::vector<NodeID> nodes;
int level; // Dependency level
bool canProcessInParallel;
};
std::vector<ParallelGroup> detectParallelBranches(const AudioGraph& graph);
};
Algorithm: 1. Group nodes by dependency level 2. Within each level, check for inter-dependencies 3. Nodes at same level with no paths between them β parallel
2. Thread Pool¶
class ThreadPool {
std::vector<std::thread> workers;
std::queue<std::function<void()>> tasks;
std::mutex queueMutex;
std::condition_variable condition;
void enqueue(std::function<void()> task);
void waitAll();
};
Features: - Pre-allocated worker threads - Lock-free task queue (optional) - Work stealing for load balance - Thread-local storage for cache efficiency
3. Parallel Graph Executor¶
class ParallelGraphExecutor {
ThreadPool threadPool;
std::vector<ParallelBranch> branches;
void identifyParallelBranches(const AudioGraph& graph);
void processParallel();
};
Execution Strategy: 1. Launch parallel branches on separate threads 2. Wait for all to complete (barrier) 3. Process serial dependencies 4. Repeat
4. SIMD Branch Processing¶
// Process 8 mono channels with single SIMD instruction
__m256 input = _mm256_load_ps(inputs);
__m256 output = processAVX(input, params);
_mm256_store_ps(outputs, output);
Requirements: - Identical processing algorithm - Same parameters (or batch) - Aligned memory (32-byte)
5. Work Stealing Scheduler¶
class WorkStealingScheduler {
std::vector<std::deque<Task>> perThreadQueues;
void enqueue(Task task);
Task steal(); // From other thread's queue
};
Benefit: Dynamic load balancing - Busy threads steal work from idle threads - Minimizes idle time - Adapts to varying node complexity
π ESTRUCTURA¶
05_11_08_parallel_processing/
βββ include/
β βββ ParallelDetector.h
β βββ ThreadPool.h
β βββ ParallelGraphExecutor.h
β βββ SIMDProcessor.h
β βββ WorkStealingScheduler.h
βββ src/
β βββ ParallelDetector.cpp
β βββ ThreadPool.cpp
β βββ ParallelGraphExecutor.cpp
β βββ SIMDProcessor.cpp
β βββ WorkStealingScheduler.cpp
βββ tests/
β βββ test_parallel_detection.cpp
β βββ test_thread_pool.cpp
β βββ test_parallel_execution.cpp
β βββ test_simd_processing.cpp
β βββ test_correctness.cpp # Serial vs Parallel match
βββ examples/
β βββ parallel_effects.cpp
β βββ multiband_parallel.cpp
β βββ benchmarks.cpp
βββ docs/
βββ PARALLELIZATION_THEORY.md
βββ PERFORMANCE_ANALYSIS.md
βββ TUNING_GUIDE.md
π― ENTREGABLES¶
- ParallelDetector implementation
- ThreadPool implementation
- ParallelGraphExecutor
- SIMD optimizations
- Work stealing scheduler
- 15+ unit tests
- Performance benchmarks on 2/4/8 cores
- Scalability analysis
- Thread-safety documentation
- Optimization guide
π MΓTRICAS DE ΓXITO¶
Speedup (vs serial execution)¶
- β 2-core: 1.8x tΓpico (90% efficiency)
- β 4-core: 3.0x tΓpico (75% efficiency)
- β 8-core: 5.0x tΓpico (62% efficiency)
Scalability¶
- β Linear hasta 4 cores
- β Sub-linear pero positivo 4-8 cores
- β Diminishing returns >8 cores (dependencies)
Overhead¶
- β <5% overhead vs optimal hand-tuned
- β Thread creation: One-time at startup
- β Sync overhead: <1% of processing time
Correctness¶
- β Bit-exact match with serial execution
- β Deterministic output (given same input)
- β Zero data races (Valgrind/TSan clean)
π EXPECTED PERFORMANCE¶
Graph with 40% parallelizable work¶
Amdahl's Law: Speedup = 1 / ((1-P) + P/N)
Cores Theoretical Typical Efficiency
1 1.0x 1.0x 100%
2 1.43x 1.3x 65%
4 1.82x 1.6x 40%
8 2.11x 1.8x 22%
Graph with 80% parallelizable work¶
Cores Theoretical Typical Efficiency
1 1.0x 1.0x 100%
2 1.82x 1.7x 85%
4 3.08x 2.6x 65%
8 4.71x 3.8x 47%
Factors affecting real-world performance: - Dependency density - Node complexity variance - Cache effects - Sync overhead - Memory bandwidth
π§ͺ BENCHMARKS¶
Test Scenarios¶
- Diamond Graph
- Expected: 1.9x on 2-core
-
Work: 50% parallelizable
-
Multi-Band Processor
- Expected: 3.5x on 4-core
-
Work: 90% parallelizable
-
Effect Rack
- Expected: 3.8x on 4-core
- Work: 95% parallelizable
π‘ OPTIMIZATION TIPS¶
When Parallelization Helps¶
β Multiple independent branches β CPU-heavy nodes (convolution, FFT) β Similar-cost nodes (balanced load) β Sufficient work per node (>100ΞΌs)
When Parallelization Hurts¶
β Mostly serial dependencies β Very fast nodes (<10ΞΌs each) β Highly imbalanced load β Memory-bound processing
Best Practices¶
- Group small nodes into larger chunks
- Balance work across threads
- Minimize sync points
- Use thread-local storage
- Align data for SIMD
π§ CONFIGURATION¶
ParallelGraphExecutor executor;
// Thread count (0 = auto-detect)
executor.setThreadCount(4);
// Enable/disable features
executor.enableWorkStealing(true);
executor.enableSIMD(true);
// Tuning
executor.setMinNodeCostForParallel(100); // ΞΌs
executor.setMaxThreads(8);
Creado: 2025-10-14 VersiΓ³n: 1.0.0