PLAN DE DESARROLLO - 05_11_GRAPH_SYSTEM¶
🕸️ Sistema de Grafos de Procesamiento DSP¶
Versión: 1.0.0 Fecha de creación: 2025-10-14 Criticidad: ⭐⭐⭐⭐⭐ (Crítica - fundación de toda la arquitectura DSP) Tiempo estimado total: 12-18 meses persona
RESUMEN EJECUTIVO¶
El Graph System es la infraestructura de conexión y flujo que permite construir arquitecturas DSP arbitrariamente complejas mediante grafos dirigidos de procesamiento. Es el sistema nervioso que conecta células L2 y engines L3 en topologías dinámicas, gestionando flujo de señal, sincronización, latencia, y ordenamiento de procesamiento.
Capacidades Clave¶
- Grafos de 100+ nodos simultáneos
- Validación topológica automática (ciclos, tipos, rates)
- Ordenamiento topológico con detección de paralelismo
- Gestión de latencia con compensación automática
- Buffer management con pooling y zero-copy optimization
- Routing matrices dinámicas y modulables
- Procesamiento multi-rate sincronizado
- Reconfiguración dinámica sin glitches
- Optimización automática de topología
- Visualización y debugging en tiempo real
MARCO TEÓRICO-PRÁCTICO¶
Conceptos Fundamentales¶
1. Grafos Dirigidos Acíclicos (DAG)¶
- Nodos: Unidades de procesamiento DSP (kernels, atoms, cells)
- Edges: Conexiones que transportan señales audio/control
- Puertos: Puntos de entrada/salida con tipo y formato
- Topological Sort: Ordenamiento que respeta dependencias
2. Gestión de Latencia¶
- Path Latency: Suma de latencias de todos los nodos en un path
- Delay Compensation: Inserción automática de delays para alinear paths
- Lookahead Buffers: Buffers que compensan procesamiento predictivo
3. Buffer Management¶
- Buffer Pooling: Reutilización de memoria para reducir allocations
- Zero-Copy: Pasar punteros en lugar de copiar datos
- Lifetime Analysis: Determinar cuándo buffers pueden compartirse
4. Multi-Rate Processing¶
- Upsampling/Downsampling: Conversión entre sample rates
- Control Rate: Procesamiento a tasa reducida para señales lentas
- Rate Compensation: Sincronización entre dominios de rate
Algoritmos Específicos¶
Topological Sorting (Kahn's Algorithm)¶
1. Calcular in-degree de cada nodo
2. Queue ← nodos con in-degree = 0
3. Mientras queue no vacía:
a. node ← dequeue()
b. añadir node a resultado
c. Para cada vecino de node:
- decrementar in-degree
- si in-degree = 0: enqueue vecino
4. Si no todos los nodos visitados: ciclo detectado
Cycle Detection (DFS con colores)¶
WHITE: no visitado
GRAY: en proceso (en el stack)
BLACK: completado
Si encontramos arista a nodo GRAY: back edge = ciclo
Buffer Lifetime Analysis (Graph Coloring)¶
1. Crear grafo de interferencia
- Nodos = buffers
- Aristas = lifetimes se solapan
2. Colorear con mínimo número de colores
3. Buffers con mismo color comparten memoria
Patterns Arquitectónicos¶
1. Graph Builder Pattern¶
- Construcción incremental del grafo
- Validación diferida hasta build()
- Immutable graph tras construcción
2. Visitor Pattern¶
- Traversal del grafo para análisis
- Operaciones sin modificar estructura
3. Command Pattern¶
- Reconfiguración como comandos
- Undo/redo de cambios topológicos
4. Observer Pattern¶
- Notificación de cambios en el grafo
- Actualización de visualización
Métricas de Calidad¶
Performance¶
- Node Capacity: 100+ nodos @ 48kHz, 512 samples
- Latency Precision: ±1 sample compensation accuracy
- CPU Overhead: <5% para gestión del grafo
- Memory Efficiency: 50%+ reducción via buffer sharing
- Parallel Speedup: 3-4x en hardware 8-core
Robustness¶
- Cycle Detection: 100% accuracy
- Type Validation: Zero runtime type errors
- Glitch-Free Reconfig: <50ms transition
- Stability: Zero crashes por topología inválida
Developer Experience¶
- Build Time: 10x más rápido construir sistemas complejos
- Debug Visibility: Visualización clara de cualquier grafo
- Reusability: 80%+ código reusado via subgraphs
PRIORIZACIÓN Y DEPENDENCIAS¶
Orden de Implementación¶
Nivel 1 - Fundamentos (6-8 semanas)
Nivel 2 - Validación y Ordenamiento (4-6 semanas)
Nivel 3 - Gestión de Recursos (6-8 semanas)
Nivel 4 - Routing Avanzado (6-8 semanas)
Nivel 5 - Optimización y Paralelismo (8-10 semanas)
Nivel 6 - Herramientas (4-6 semanas)
Nivel 7 - Integración y Testing (4-6 semanas)
TAREAS DE DESARROLLO¶
TAREA 1: Graph Core - Núcleo del Sistema¶
Carpeta: 05_11_00_graph_core
Prioridad: CRÍTICA (Fundación)
Dependencias: Ninguna
Estimación: 6-8 semanas
DESARROLLO:¶
1. Core Implementation¶
1.1 Node Structure
- Clase GraphNode con ID único, tipo, y metadata
- Sistema de puertos (input/output) con tipos (AUDIO, CONTROL, MIDI, SIDECHAIN)
- Port descriptor: tipo, dirección, channel count, sample rate, block size
- Interfaz IDSPProcessor para delegar procesamiento
- Estado del nodo: bypass, mix level, latency samples
- Metadata: nombre, categoría, versión, vendor
1.2 Edge Structure
- Clase GraphEdge representando conexiones
- Connection descriptor: source/dest node + port IDs
- Propiedades: gain, mute, delay samples
- Buffer asociado para transferir datos
- Métodos: transfer(), applyGain(), applyDelay()
1.3 Graph Container
- Clase AudioGraph como contenedor principal
- Storage: unordered_map<NodeID, unique_ptr<GraphNode>>
- Edge list: vector<unique_ptr<GraphEdge>>
- Process order cache: vector<NodeID> (topological sort result)
- Dirty flag para re-sorting
- Subgraph registry
1.4 Graph Operations
- addNode(node) → NodeID
- removeNode(nodeId)
- connect(fromNode, fromPort, toNode, toPort)
- disconnect(edge)
- process(input, output) - procesamiento principal
- prepare(sampleRate, blockSize) - inicialización
- reset() - limpiar estado
1.5 Port Management - Port validation (type, channel count, rate) - Dynamic port creation/removal - Port format negotiation - Multi-channel port support
2. Testing Framework¶
Unit Tests:
- test_node_creation() - crear nodos con diferentes configs
- test_edge_creation() - conexiones válidas
- test_graph_operations() - add/remove/connect
- test_port_validation() - compatibilidad de puertos
- test_node_processing() - llamada a processor delegate
- test_bypass_mode() - bypass correcto
- test_mix_level() - gain aplicado correctamente
Integration Tests:
- test_simple_chain() - 3 nodos en serie
- test_parallel_branches() - split y merge
- test_complex_graph() - 10+ nodos
- test_graph_prepare() - inicialización completa
- test_graph_reset() - limpieza de estado
Performance Tests:
- benchmark_node_creation() - tiempo de crear 1000 nodos
- benchmark_connection() - tiempo de 1000 conexiones
- benchmark_traversal() - iterar grafo grande
- Memory profiling - no leaks
Target Coverage: >95%
3. Documentación¶
Inline Documentation:
/**
* @class GraphNode
* @brief Fundamental processing unit in the audio graph
*
* A GraphNode represents a single DSP processor with input/output ports.
* It delegates actual processing to an IDSPProcessor implementation.
*
* @example
* auto node = std::make_unique<GraphNode>();
* node->addInputPort(PortType::AUDIO, 2); // Stereo input
* node->addOutputPort(PortType::AUDIO, 2); // Stereo output
* node->setProcessor(std::make_unique<MyProcessor>());
*/
API Documentation: - Class reference for GraphNode, GraphEdge, AudioGraph - Method signatures with parameter descriptions - Return values and exceptions - Thread-safety guarantees
Usage Examples:
// Example 1: Create simple 2-node chain
AudioGraph graph;
auto gain1 = graph.addNode(std::make_unique<GainNode>());
auto gain2 = graph.addNode(std::make_unique<GainNode>());
graph.connect(gain1, 0, gain2, 0);
graph.prepare(48000, 512);
graph.process(inputBuffer, outputBuffer);
Technical Specifications: - Memory layout of structures - Alignment requirements (32-byte for SIMD) - Thread model (single-threaded graph modification) - Real-time safety considerations
4. Interfaces y Conexiones¶
Public APIs:
// Graph construction API
class AudioGraph {
public:
NodeID addNode(std::unique_ptr<GraphNode> node);
void removeNode(NodeID id);
void connect(NodeID from, PortID fromPort, NodeID to, PortID toPort);
void disconnect(NodeID from, NodeID to);
// Processing API
void prepare(double sampleRate, int blockSize);
void process(AudioBuffer& input, AudioBuffer& output);
void reset();
// Query API
size_t getNodeCount() const;
size_t getEdgeCount() const;
const GraphNode* getNode(NodeID id) const;
};
Events:
// Graph change notifications
struct GraphChangeEvent {
enum Type { NODE_ADDED, NODE_REMOVED, CONNECTION_MADE, CONNECTION_BROKEN };
Type type;
NodeID nodeId;
// ... details
};
class IGraphListener {
public:
virtual void onGraphChanged(const GraphChangeEvent& event) = 0;
};
Data Contracts:
// Node descriptor for serialization
struct NodeDescriptor {
std::string type;
std::string name;
json parameters;
std::vector<PortDescriptor> inputs;
std::vector<PortDescriptor> outputs;
};
ENTREGABLES:¶
- GraphNode class implementation
- GraphEdge class implementation
- AudioGraph container implementation
- Port management system
- 20+ unit tests (>95% coverage)
- 10+ integration tests
- Performance benchmarks
- Complete API documentation
- 5+ usage examples
- Technical specification document
TAREA 2: Topology Validation - Validación Topológica¶
Carpeta: 05_11_01_topology_validation
Prioridad: ALTA
Dependencias: 00_graph_core
Estimación: 4-6 semanas
DESARROLLO:¶
1. Core Implementation¶
1.1 Cycle Detector
- DFS-based cycle detection con color marking (WHITE/GRAY/BLACK)
- Identificación de back edges
- Verificación de delay en ciclos (feedback válido)
- Reportar path completo del ciclo detectado
- Excepciones: CycleDetectionError con detalles
1.2 Type Compatibility Validator - Type compatibility matrix: - AUDIO → AUDIO (con channel conversion) - CONTROL → CONTROL (con rate conversion) - AUDIO → CONTROL (con envelope follower) - MIDI → MIDI - Channel matching rules: - Mono→Mono: direct - Mono→Stereo: duplicate - Stereo→Mono: sum/average - Stereo→Stereo: direct - Surround→Stereo: downmix matrix - Sugerencias de conversión automática
1.3 Sample Rate Validator - Verificación de rate matching - Detección de ratios simples (2x, 0.5x) - Detección de ratios enteros - Validación de resampler requirements - Inserción automática de resamplers si disponibles
1.4 Channel Configuration Validator - Validar compatibilidad de channel layouts - Detectar upmixing/downmixing needs - Validar surround formats - LFE channel handling
1.5 Validation Pipeline
ValidationResult validate(const AudioGraph& graph) {
result.cycleCheck = detectCycles(graph);
result.typeCheck = validateTypes(graph);
result.rateCheck = validateSampleRates(graph);
result.channelCheck = validateChannels(graph);
return result;
}
2. Testing Framework¶
Unit Tests:
- test_detect_simple_cycle() - A→B→A
- test_detect_complex_cycle() - ciclo en grafo grande
- test_valid_feedback_loop() - ciclo con delay
- test_type_compatibility() - todas las combinaciones
- test_channel_conversion() - mono/stereo conversions
- test_rate_validation() - diferentes sample rates
- test_invalid_connection() - rechazar conexiones malas
Integration Tests:
- test_validation_pipeline() - validación completa
- test_error_reporting() - mensajes claros
- test_auto_conversion_suggestion() - sugerencias útiles
Edge Cases: - Graph vacío - Nodo aislado - Multiple ciclos - Ciclo con delay de 0 samples
Coverage Target: >90%
3. Documentación¶
API Documentation:
/**
* @class CycleDetector
* @brief Detects cycles in directed graphs using DFS
*
* Uses color-marking DFS algorithm to detect back edges.
* Distinguishes between invalid cycles and valid feedback loops.
*
* @see https://en.wikipedia.org/wiki/Cycle_(graph_theory)
*/
Usage Examples:
// Example: Validate graph before processing
AudioGraph graph;
// ... build graph ...
CycleDetector detector;
auto cycles = detector.detect(graph);
if (!cycles.empty()) {
std::cerr << "Cycle detected: ";
for (NodeID node : cycles[0]) {
std::cerr << getNodeName(node) << " → ";
}
std::cerr << std::endl;
}
Error Messages Design:
❌ Invalid cycle detected:
ReverbNode → DelayNode → FeedbackGain → ReverbNode
💡 Suggestion: Add delay compensation in feedback path
Solution 1: Insert DelayNode with minimum 1 sample
Solution 2: Use FeedbackNode which includes built-in delay
4. Interfaces y Conexiones¶
Validation API:
class GraphValidator {
public:
struct ValidationResult {
bool isValid;
std::vector<ValidationError> errors;
std::vector<ValidationWarning> warnings;
std::vector<ConversionSuggestion> suggestions;
};
ValidationResult validate(const AudioGraph& graph);
bool quickCheck(const AudioGraph& graph); // Fast basic check
};
Integration with Graph:
// Auto-validate on connect
void AudioGraph::connect(NodeID from, PortID fromPort,
NodeID to, PortID toPort) {
// Create tentative connection
auto edge = createEdge(from, fromPort, to, toPort);
// Validate
auto result = validator.validateEdge(edge);
if (!result.isValid) {
throw ConnectionError(result.errors[0].message);
}
// Apply conversion if suggested
if (result.needsConversion) {
insertConverter(edge, result.suggestions[0]);
}
edges.push_back(std::move(edge));
}
ENTREGABLES:¶
- CycleDetector implementation
- TypeCompatibilityValidator implementation
- SampleRateValidator implementation
- ChannelConfigValidator implementation
- Validation pipeline integration
- 15+ unit tests
- Error reporting system
- Conversion suggestion engine
- Documentation with examples
TAREA 3: Topological Sorting - Ordenamiento Topológico¶
Carpeta: 05_11_02_topological_sorting
Prioridad: ALTA
Dependencias: 00_graph_core, 01_topology_validation
Estimación: 4-6 semanas
DESARROLLO:¶
1. Core Implementation¶
1.1 Kahn's Algorithm Implementation
class TopologicalSorter {
std::vector<NodeID> sort(const AudioGraph& graph) {
// 1. Calculate in-degrees
// 2. Queue nodes with in-degree = 0
// 3. Process queue
// 4. Return sorted order
}
};
1.2 Parallel Branch Detector - Identificar nodos que pueden procesarse en paralelo - Agrupar por "dependency level" - Detectar independencia dentro de niveles - Marcar parallel groups
1.3 Feedback Loop Handler - Detectar back edges (feedback) - Verificar delay en feedback - Insertar delay si falta - Estrategias: - 1-sample delay (mínimo) - Block delay (eficiente para block processing) - Iterative (para physical modeling)
1.4 Processing Order Cache - Cachear resultado de topological sort - Invalidar en cambios de grafo - Lazy recomputation - Thread-safe access
1.5 Priority Sorting - Permitir hints de prioridad por nodo - Ordenar nodos del mismo nivel por prioridad - Use cases: critical path primero
2. Testing Framework¶
Unit Tests:
- test_simple_chain() - A→B→C da orden [A,B,C]
- test_parallel_branches() - detectar paralelismo
- test_diamond_graph() - A→B,C→D
- test_feedback_handling() - loop con delay
- test_priority_sorting() - respetar prioridades
- test_large_graph() - 100+ nodos
- test_incremental_update() - añadir nodo a grafo sorted
Performance Tests:
- benchmark_sort_10_nodes() - <1ms
- benchmark_sort_100_nodes() - <10ms
- benchmark_sort_1000_nodes() - <100ms
- benchmark_parallel_detection() - overhead
Integration Tests:
- test_sort_and_process() - orden correcto de processing
- test_invalidation() - re-sort tras cambio
- test_feedback_processing() - feedback funciona
Coverage Target: >90%
3. Documentación¶
Algorithm Documentation:
# Topological Sort Algorithm
## Kahn's Algorithm
1. Calculate in-degree for each node
- in-degree = number of incoming edges
2. Initialize queue with all nodes where in-degree = 0
- These are source nodes with no dependencies
3. While queue is not empty:
a. Dequeue node
b. Add to result
c. For each neighbor of node:
- Decrease in-degree by 1
- If in-degree becomes 0, enqueue neighbor
4. If not all nodes visited → cycle exists
## Complexity
- Time: O(V + E) where V=nodes, E=edges
- Space: O(V) for in-degree tracking
Usage Examples:
// Example: Sort and process in order
AudioGraph graph;
// ... build graph ...
TopologicalSorter sorter;
auto processOrder = sorter.sort(graph);
for (NodeID nodeId : processOrder) {
graph.getNode(nodeId)->process();
}
4. Interfaces y Conexiones¶
Sorting API:
class TopologicalSorter {
public:
// Basic sorting
std::vector<NodeID> sort(const AudioGraph& graph);
// Parallel-aware sorting
struct ParallelGroup {
std::vector<NodeID> nodes;
int level; // Dependency level
bool canProcessInParallel;
};
std::vector<ParallelGroup> sortWithParallelism(const AudioGraph& graph);
// Incremental update
void updateForNewNode(NodeID newNode);
void updateForRemovedNode(NodeID removedNode);
};
Integration with AudioGraph:
void AudioGraph::process(AudioBuffer& input, AudioBuffer& output) {
if (isDirty) {
processOrder = sorter.sort(*this);
isDirty = false;
}
for (NodeID nodeId : processOrder) {
nodes[nodeId]->process();
}
}
ENTREGABLES:¶
- Kahn's algorithm implementation
- Parallel branch detector
- Feedback loop handler
- Processing order cache
- Priority sorting system
- 12+ unit tests
- Performance benchmarks
- Algorithm documentation
- Usage examples
TAREA 4: Latency Management - Gestión de Latencia¶
Carpeta: 05_11_03_latency_management
Prioridad: ALTA
Dependencias: 00_graph_core, 02_topological_sorting
Estimación: 6-8 semanas
DESARROLLO:¶
1. Core Implementation¶
1.1 Latency Calculator
class LatencyCalculator {
struct PathLatency {
std::vector<NodeID> path;
int totalSamples;
std::map<NodeID, int> perNodeLatency;
};
int calculatePathLatency(const std::vector<NodeID>& path);
std::vector<PathLatency> calculateAllPaths(NodeID source, NodeID dest);
int getMaxLatency(NodeID source, NodeID dest);
};
1.2 Delay Compensation Engine - Calcular latencia de cada path - Encontrar path con máxima latencia - Insertar delays en paths más cortos - Estrategias: - Look-ahead: delay dry signal - Parallel alignment: alinear multi-band - Feedback compensation
1.3 Lookahead Buffer Manager
class LookaheadManager {
struct LookaheadBuffer {
CircularBuffer buffer;
int delaySamples;
int readPos, writePos;
};
void setupLookahead(NodeID node, int samples);
void processWithLookahead(NodeID node, float* in, float* out, int n);
};
1.4 Latency Reporter - Reportar latencia total al host - Notificar cambios de latencia - Per-node latency breakdown - Visualización de latency map
1.5 PDC (Plugin Delay Compensation) - Query plugin latency - Track latency changes - Compensate automatically - Host communication
2. Testing Framework¶
Unit Tests:
- test_single_path_latency() - calcular latencia simple
- test_parallel_paths() - múltiples paths
- test_compensation_insertion() - delays correctos
- test_lookahead_buffer() - buffer circular funciona
- test_latency_reporting() - reportar al host
- test_dynamic_latency_change() - cambio en runtime
Integration Tests:
- test_parallel_band_alignment() - multi-band alineado
- test_dry_wet_alignment() - dry/wet sincronizados
- test_feedback_with_latency() - feedback compensado
Accuracy Tests:
- test_compensation_accuracy() - precisión ±1 sample
- test_phase_alignment() - verificar phase-aligned output
Performance Tests:
- benchmark_latency_calculation() - tiempo de cálculo
- benchmark_compensation_overhead() - overhead de delays
Coverage Target: >90%
3. Documentación¶
Conceptual Documentation:
# Latency Management
## Problem
Different processing paths introduce different delays.
Without compensation, parallel signals become misaligned.
## Solution
1. Calculate latency of each path
2. Find maximum latency
3. Delay shorter paths to match
## Example
Path A: Filter (0ms) → Gain (0ms) = 0ms
Path B: Reverb (50ms) = 50ms
Compensation: Insert 50ms delay in Path A
Result: Both paths aligned at output
API Documentation:
/**
* @class LatencyCalculator
* @brief Calculates signal latency through graph paths
*
* Traverses graph paths and sums latency contributions from each node.
* Supports multiple paths between source and destination.
*
* @note Latency is measured in samples, not milliseconds
*/
Usage Examples:
// Example: Compensate parallel processing
AudioGraph graph;
auto dry = graph.addNode(makeGain());
auto wet = graph.addNode(makeReverb()); // 50ms latency
auto mix = graph.addNode(makeMixer());
graph.connect(input, 0, dry, 0);
graph.connect(input, 0, wet, 0);
graph.connect(dry, 0, mix, 0);
graph.connect(wet, 0, mix, 1);
// Auto-compensation
LatencyCompensator compensator;
compensator.compensate(graph);
// → Inserts 50ms delay before dry path
4. Interfaces y Conexiones¶
Latency API:
class LatencyManager {
public:
// Query latency
int getNodeLatency(NodeID node) const;
int getPathLatency(NodeID from, NodeID to) const;
int getTotalLatency() const;
// Compensation
void compensateGraph(AudioGraph& graph);
void compensatePath(AudioGraph& graph, NodeID from, NodeID to);
// Reporting
void reportToHost(IHostCallback* host);
// Events
void onLatencyChanged(std::function<void(int)> callback);
};
Host Integration:
// VST3 example
class PluginProcessor : public Vst::IAudioProcessor {
uint32 getLatencySamples() override {
return latencyManager.getTotalLatency();
}
void onGraphChanged() {
latencyManager.recalculate();
if (latencyChanged()) {
notifyHost(Vst::kLatencyChanged);
}
}
};
ENTREGABLES:¶
- LatencyCalculator implementation
- Delay compensation engine
- Lookahead buffer manager
- Latency reporter
- PDC system
- 15+ unit tests
- Accuracy validation suite
- Performance benchmarks
- Complete documentation
- Host integration examples
TAREA 5: Buffer Management - Gestión de Buffers¶
Carpeta: 05_11_04_buffer_management
Prioridad: ALTA
Dependencias: 00_graph_core, 02_topological_sorting
Estimación: 6-8 semanas
DESARROLLO:¶
1. Core Implementation¶
1.1 Buffer Pool
class GraphBufferPool {
struct BufferInfo {
std::unique_ptr<AudioBuffer> buffer;
bool inUse;
NodeID owner;
size_t size;
int channels;
};
AudioBuffer* acquire(int channels, int samples);
void release(AudioBuffer* buffer);
void preallocate(size_t count, int channels, int samples);
void trim(); // Release unused buffers
};
1.2 Lifetime Analyzer - Analizar cuándo cada buffer está "live" - Identificar buffers con lifetimes no-overlapping - Construir interference graph - Graph coloring para minimizar buffers
1.3 Zero-Copy Router
class ZeroCopyRouter {
bool canZeroCopy(const GraphEdge& edge);
void routeZeroCopy(GraphEdge& edge); // Pass pointer
void routeWithCopy(GraphEdge& edge); // Copy data
};
1.4 Buffer Allocator - Aligned allocation (32-byte para AVX) - NUMA-aware allocation en sistemas multi-socket - Huge pages support para large buffers - Lock-free para real-time
1.5 Memory Profiler - Track allocations/deallocations - Detect leaks - Report peak usage - Identify optimization opportunities
2. Testing Framework¶
Unit Tests:
- test_pool_acquire_release() - acquire/release cycle
- test_pool_reuse() - verificar reuso
- test_lifetime_analysis() - lifetimes correctos
- test_zero_copy_detection() - detectar oportunidades
- test_alignment() - buffers aligned correctamente
- test_thread_safety() - pool thread-safe
Integration Tests:
- test_graph_buffer_sharing() - sharing en grafo real
- test_memory_efficiency() - reducción de memoria
- test_no_leaks() - zero leaks tras 1000 cycles
Performance Tests:
- benchmark_acquire_release() - overhead de pool
- benchmark_zero_copy_vs_copy() - speedup
- benchmark_cache_efficiency() - cache hits
Memory Tests: - Memory usage con/sin pooling - Peak memory reduction - Fragmentation analysis
Coverage Target: >90%
3. Documentación¶
Architecture Documentation:
# Buffer Management Architecture
## Buffer Pool
Reuses allocated buffers instead of constant new/delete.
Benefits:
- Faster: No allocator overhead
- Predictable: No allocation in real-time thread
- Efficient: Better cache locality
## Lifetime Analysis
Determines which buffers can share memory.
Algorithm:
1. Build liveness intervals for each buffer
2. Create interference graph
3. Color graph with minimum colors
4. Buffers with same color share memory
## Zero-Copy Optimization
Passes buffer pointers instead of copying data.
Conditions for zero-copy:
- Same channel count
- Same sample count
- No gain change
- No processing
API Documentation:
/**
* @class GraphBufferPool
* @brief Thread-safe pool of reusable audio buffers
*
* Maintains a pool of pre-allocated buffers to avoid runtime allocation.
* Automatically grows when needed and can trim unused buffers.
*
* @thread_safety Thread-safe for acquire/release operations
*/
Usage Examples:
// Example: Use buffer pool in graph
GraphBufferPool pool;
// Preallocate for expected usage
pool.preallocate(20, 2, 512); // 20 stereo buffers, 512 samples
// Processing
void processGraph() {
auto* buffer = pool.acquire(2, 512);
// ... use buffer ...
pool.release(buffer);
}
// Cleanup
pool.trim(); // Release unused buffers
4. Interfaces y Conexiones¶
Buffer Management API:
class BufferManager {
public:
// Pool management
void initialize(size_t poolSize, int defaultChannels, int defaultSamples);
void shutdown();
// Acquisition
AudioBuffer* acquireBuffer(int channels, int samples);
void releaseBuffer(AudioBuffer* buffer);
// Optimization
void analyzeGraph(const AudioGraph& graph);
size_t getMemorySavings() const;
// Profiling
struct MemoryStats {
size_t totalAllocated;
size_t peakUsage;
size_t currentUsage;
int activeBuffers;
};
MemoryStats getStats() const;
};
Integration with Graph:
void AudioGraph::prepare(double sampleRate, int blockSize) {
// Analyze buffer requirements
bufferManager.analyzeGraph(*this);
// Preallocate based on analysis
auto requirements = bufferManager.getRequirements();
bufferManager.preallocate(requirements);
}
void AudioGraph::process() {
// Buffers acquired/released automatically during processing
}
ENTREGABLES:¶
- GraphBufferPool implementation
- Lifetime analyzer
- Zero-copy router
- Aligned allocator
- Memory profiler
- 15+ unit tests
- Integration tests
- Performance benchmarks
- Memory analysis tools
- Complete documentation
TAREA 6: Routing Matrices - Matrices de Ruteo¶
Carpeta: 05_11_05_routing_matrices
Prioridad: MEDIA
Dependencias: 00_graph_core, 04_buffer_management
Estimación: 4-6 semanas
DESARROLLO:¶
1. Core Implementation¶
1.1 Routing Matrix Core
class RoutingMatrix : public GraphNode {
int numInputs, numOutputs;
std::vector<std::vector<float>> gains; // [input][output]
std::vector<std::vector<bool>> mutes;
void setConnection(int input, int output, float gain);
void process(AudioBuffer** inputs, AudioBuffer** outputs);
};
1.2 Crossfade Router - Equal-power crossfade - Linear crossfade - Logarithmic crossfade - Smooth transition (10-50ms ramp) - Click prevention
1.3 Modulation System
1.4 Matrix Presets - Common routing patterns: - Stereo to mono - Mono to stereo - M/S encoding/decoding - LCR (Left-Center-Right) - Surround downmix matrices
1.5 Dynamic Routing - Runtime connection changes - Smooth gain ramping - Mute/unmute without clicks
2. Testing Framework¶
Unit Tests:
- test_matrix_creation() - crear matrices de diferentes tamaños
- test_set_connection() - establecer gain
- test_routing() - verificar routing correcto
- test_crossfade() - transiciones suaves
- test_modulation() - modulación funciona
- test_presets() - presets correctos
Integration Tests:
- test_matrix_in_graph() - matriz como nodo
- test_dynamic_routing() - cambios en runtime
- test_large_matrix() - 64x64 matrix
Audio Tests:
- test_no_clicks() - sin clicks en cambios
- test_gain_accuracy() - gain preciso
- test_phase_preservation() - no phase issues
Performance Tests:
- benchmark_matrix_processing() - overhead
- benchmark_crossfade() - costo de crossfade
Coverage Target: >85%
3. Documentación¶
Conceptual Documentation:
# Routing Matrices
## Purpose
Flexible signal routing between multiple inputs and outputs.
## Use Cases
- Mixer consoles
- Multi-bus routing
- Surround sound processing
- Modular synthesis patching
## Crossfade Curves
- **Equal Power:** Constant perceived loudness
- gain_a = cos(θ), gain_b = sin(θ)
- **Linear:** Simple but center dip
- gain_a = 1-x, gain_b = x
- **Logarithmic:** Smooth transition
- gain_a = 10^(-x*3), gain_b = 10^(-(1-x)*3)
API Documentation:
/**
* @class RoutingMatrix
* @brief NxM routing matrix with per-connection gain and mute
*
* Provides flexible routing between N inputs and M outputs.
* Each connection has independent gain and mute control.
* Supports modulation of routing gains.
*/
Usage Examples:
// Example: 2x4 routing matrix
auto matrix = std::make_unique<RoutingMatrix>(2, 4);
// Route input 0 to outputs 0 and 1 (stereo)
matrix->setConnection(0, 0, 1.0f); // Left
matrix->setConnection(0, 1, 1.0f); // Right
// Route input 1 to outputs 2 and 3
matrix->setConnection(1, 2, 0.8f);
matrix->setConnection(1, 3, 0.8f);
// Crossfade input 0 from output 0 to output 2
matrix->crossfade(0, 0, 0, 2, 50.0f); // 50ms crossfade
4. Interfaces y Conexiones¶
Routing API:
class RoutingMatrix {
public:
RoutingMatrix(int numInputs, int numOutputs);
// Connections
void setConnection(int input, int output, float gain);
float getConnection(int input, int output) const;
void muteConnection(int input, int output);
void unmuteConnection(int input, int output);
// Crossfade
void crossfade(int input, int fromOutput, int toOutput, float timeMs);
// Modulation
void addModulation(int input, int output, float* modSource, float amount);
// Presets
void loadPreset(MatrixPreset preset);
void savePreset() const;
};
Preset System:
enum class MatrixPreset {
STEREO_TO_MONO,
MONO_TO_STEREO,
MS_ENCODE,
MS_DECODE,
LCR,
SURROUND_51_TO_STEREO,
IDENTITY
};
ENTREGABLES:¶
- RoutingMatrix implementation
- Crossfade system
- Modulation system
- Matrix presets library
- 12+ unit tests
- Audio quality tests
- Performance benchmarks
- Usage documentation
- Preset library
TAREA 7: Multi-Rate Processing - Procesamiento Multi-Rate¶
Carpeta: 05_11_06_multirate_processing
Prioridad: MEDIA
Dependencias: 00_graph_core, 01_topology_validation
Estimación: 6-8 semanas
DESARROLLO:¶
1. Core Implementation¶
1.1 Rate Converter Node
class RateConverterNode : public GraphNode {
double inputRate, outputRate, ratio;
std::unique_ptr<Resampler> resampler;
void prepare(double inRate, double outRate);
void process(AudioBuffer& input, AudioBuffer& output);
};
1.2 Resampler Implementations - UpsamplerX2: 2x upsampling (polyphase FIR) - DownsamplerX2: 2x downsampling (antialias + decimate) - PolyphaseResampler: Arbitrary ratio resampling - LinearResampler: Fast but low quality - SincResampler: High quality
1.3 Control Rate Processing
class ControlRateNode : public GraphNode {
int decimationFactor; // Process every N samples
std::vector<float> accumulator;
void processControlRate();
void interpolateToAudioRate();
};
1.4 Oversampling System - 2x, 4x, 8x oversampling options - Automatic insertion of up/downsampling - Latency compensation for oversampling - Quality vs CPU trade-off
1.5 Multi-Rate Scheduler - Schedule nodos según rate - Sincronización entre rates - Buffer size adjustment
2. Testing Framework¶
Unit Tests:
- test_2x_upsampling() - verificar 2x
- test_2x_downsampling() - verificar 0.5x
- test_arbitrary_ratio() - 44.1k → 48k
- test_control_rate() - decimation works
- test_interpolation() - upsample back to audio
- test_latency_compensation() - compensar oversampling
Audio Quality Tests:
- test_frequency_response() - flat response
- test_aliasing() - no aliasing in downsampling
- test_imaging() - no imaging in upsampling
- test_passband_ripple() - <0.1dB
- test_stopband_attenuation() - >80dB
Performance Tests:
- benchmark_2x_upsampling() - CPU usage
- benchmark_arbitrary_resampling() - overhead
- benchmark_control_rate_savings() - CPU saved
Coverage Target: >85%
3. Documentación¶
Theory Documentation:
# Multi-Rate Processing
## Upsampling
Process: Zero-stuff → Lowpass Filter
Ratio 2x:
- Insert zero between each sample
- Filter at original Nyquist frequency
- Result: 2x sample rate
## Downsampling
Process: Lowpass Filter → Decimate
Ratio 0.5x:
- Filter at new Nyquist frequency (antialias)
- Keep every 2nd sample
- Result: 0.5x sample rate
## Control Rate
Many signals don't need audio rate processing:
- LFOs (<20Hz)
- Envelope followers
- Meters
- Macro controls
Process every N samples (decimation factor 32-128)
Interpolate back to audio rate for output
Saves 30-50% CPU on suitable signals
API Documentation:
/**
* @class RateConverterNode
* @brief Converts between different sample rates
*
* Supports integer ratios (2x, 4x, 8x, 0.5x, 0.25x) and arbitrary ratios.
* Uses polyphase filtering for high quality conversion.
*
* @performance Integer ratios: ~0.5ms/1000 samples @ 48kHz
* Arbitrary ratios: ~2ms/1000 samples @ 48kHz
*/
Usage Examples:
// Example: 4x oversampling for nonlinear processor
auto upsample = std::make_unique<RateConverterNode>();
upsample->setRatio(4.0);
auto saturator = std::make_unique<SaturatorNode>();
auto downsample = std::make_unique<RateConverterNode>();
downsample->setRatio(0.25);
graph.connect(input, upsample);
graph.connect(upsample, saturator);
graph.connect(saturator, downsample);
graph.connect(downsample, output);
4. Interfaces y Conexiones¶
Resampling API:
class ResamplingManager {
public:
// Insert resamplers automatically
void insertResamplers(AudioGraph& graph);
// Oversampling
void enableOversampling(NodeID node, int factor);
void disableOversampling(NodeID node);
// Control rate
void setControlRate(NodeID node, int decimation);
// Query
double getNodeRate(NodeID node) const;
int getOversamplingFactor(NodeID node) const;
};
Quality Settings:
enum class ResamplingQuality {
DRAFT, // Linear, fast
GOOD, // Polyphase 32-tap
HIGH, // Polyphase 128-tap
BEST // Sinc windowed
};
ENTREGABLES:¶
- RateConverterNode implementation
- Multiple resampler algorithms
- Control rate system
- Oversampling system
- Multi-rate scheduler
- 15+ unit tests
- Audio quality test suite
- Performance benchmarks
- Theory documentation
- Quality comparison charts
TAREA 8: Subgraph Abstraction - Abstracción de Subgrafos¶
Carpeta: 05_11_07_subgraph_abstraction
Prioridad: MEDIA
Dependencias: 00_graph_core, 02_topological_sorting
Estimación: 4-6 semanas
DESARROLLO:¶
1. Core Implementation¶
1.1 Subgraph Template
# Template definition format
metadata:
name: "Vintage Channel Strip"
category: "Channel Strips"
version: "1.0.0"
author: "AudioLab"
interface:
inputs:
- name: main
type: audio
channels: 2
- name: sidechain
type: audio
channels: 1
outputs:
- name: main
type: audio
channels: 2
- name: send
type: audio
channels: 2
parameters:
- name: gain
range: [-inf, 12dB]
default: 0dB
- name: comp_threshold
range: [-40dB, 0dB]
default: -12dB
internal_graph:
nodes:
- id: input_gain
type: GainNode
- id: eq
type: ThreeBandEQNode
- id: compressor
type: VCACompressorNode
- id: output_gain
type: GainNode
connections:
- [input→input_gain]
- [input_gain→eq]
- [eq→compressor]
- [compressor→output_gain]
- [sidechain→compressor.key]
1.2 Subgraph Instance
class SubGraphInstance : public GraphNode {
std::unique_ptr<AudioGraph> internalGraph;
std::map<std::string, NodeID> interfaceNodes;
std::map<std::string, ParamID> exposedParams;
void instantiate(const SubGraphTemplate& tmpl);
void process(AudioBuffer& input, AudioBuffer& output) override;
};
1.3 Template Loader - Load from YAML/JSON - Validate template structure - Resolve node type references - Build internal graph
1.4 Parameter Mapping - Map template parameters to internal nodes - Support parameter groups - Parameter constraints - Value transformations
1.5 Subgraph Library - Registry of available templates - Categories and tags - Search and filtering - Version management
2. Testing Framework¶
Unit Tests:
- test_template_loading() - parse YAML correctly
- test_subgraph_instantiation() - create instance
- test_parameter_mapping() - params map correctly
- test_nested_subgraphs() - subgraph dentro de subgraph
- test_interface_validation() - interface correcto
Integration Tests:
- test_subgraph_in_main_graph() - usar como nodo
- test_subgraph_library() - registry funciona
- test_version_compatibility() - version handling
Audio Tests:
- test_subgraph_processing() - procesamiento correcto
- test_latency_reporting() - latencia total correcta
Coverage Target: >85%
3. Documentación¶
Conceptual Documentation:
# Subgraph Abstraction
## Purpose
Encapsulate complex multi-node topologies as reusable components.
## Benefits
- **Modularity:** Build once, use many times
- **Abstraction:** Hide internal complexity
- **Reusability:** Share subgraphs between projects
- **Maintainability:** Update definition, all instances update
## Use Cases
- Channel strips (gain + EQ + comp)
- Mastering chains (multiband + limiter + dither)
- Effect modules (chorus + reverb + delay)
- Synthesizer voices (osc + filter + env)
## Example
A "Vintage Channel" subgraph contains:
- Input gain
- 3-band EQ
- VCA compressor with sidechain
- Output gain (makeup)
External view: Single node with 5 parameters
Internal reality: 4 connected nodes
Template Specification:
# Subgraph Template Format
## Structure
- metadata: Name, version, author, description
- interface: Exposed inputs, outputs, parameters
- internal_graph: Nodes and connections
- initialization: Default parameter values
## Parameter Mapping
Maps exposed parameters to internal node parameters.
Supports transformations: linear, exponential, table lookup.
Example:
exposed_param "drive" → internal "gain" with 2x multiplier
Usage Examples:
// Example: Load and use subgraph
SubGraphLibrary library;
library.loadFromDirectory("subgraphs/");
// Instantiate
auto channelStrip = library.createInstance("Vintage Channel");
// Add to main graph
auto nodeId = graph.addNode(std::move(channelStrip));
// Set parameters
graph.setParameter(nodeId, "gain", 3.0f);
graph.setParameter(nodeId, "comp_threshold", -18.0f);
4. Interfaces y Conexiones¶
Subgraph API:
class SubGraphLibrary {
public:
// Loading
void loadTemplate(const std::string& path);
void loadFromDirectory(const std::string& dir);
// Query
std::vector<std::string> listTemplates() const;
SubGraphTemplate getTemplate(const std::string& name) const;
// Instantiation
std::unique_ptr<SubGraphInstance> createInstance(const std::string& name);
};
class SubGraphInstance {
public:
// External interface (appears as single node)
void process(AudioBuffer& input, AudioBuffer& output) override;
void setParameter(const std::string& name, float value);
float getParameter(const std::string& name) const;
// Internal access (for debugging)
const AudioGraph& getInternalGraph() const;
};
Template Format:
struct SubGraphTemplate {
struct Metadata {
std::string name;
std::string category;
std::string version;
std::string author;
};
struct Interface {
std::vector<PortDescriptor> inputs;
std::vector<PortDescriptor> outputs;
std::vector<ParameterDescriptor> parameters;
};
struct InternalGraph {
std::vector<NodeDescriptor> nodes;
std::vector<ConnectionDescriptor> connections;
};
Metadata metadata;
Interface interface;
InternalGraph internalGraph;
};
ENTREGABLES:¶
- SubGraphTemplate structure
- SubGraphInstance implementation
- Template loader (YAML/JSON)
- Parameter mapping system
- SubGraphLibrary
- 10+ unit tests
- Template specification document
- Example templates library (5+)
- Usage documentation
TAREA 9: Parallel Processing - Procesamiento Paralelo¶
Carpeta: 05_11_08_parallel_processing
Prioridad: ALTA
Dependencias: 00_graph_core, 02_topological_sorting
Estimación: 6-8 semanas
DESARROLLO:¶
1. Core Implementation¶
1.1 Parallel Branch Identifier
class ParallelDetector {
struct ParallelGroup {
std::vector<NodeID> nodes;
int level; // Dependency level
bool canProcessInParallel;
};
std::vector<ParallelGroup> detectParallelBranches(const AudioGraph& graph);
};
1.2 Thread Pool
class ThreadPool {
std::vector<std::thread> workers;
std::queue<std::function<void()>> tasks;
std::mutex queueMutex;
std::condition_variable condition;
void enqueue(std::function<void()> task);
void waitAll();
};
1.3 Parallel Graph Executor
class ParallelGraphExecutor {
ThreadPool threadPool;
std::vector<ParallelBranch> branches;
void identifyParallelBranches(const AudioGraph& graph);
void processParallel();
};
1.4 SIMD Branch Processing - Detectar nodos idénticos procesables en SIMD - AVX processing de 8 canales paralelos - NEON processing (ARM)
1.5 Work Stealing Scheduler - Thread pool con work stealing - Balance dinámico de carga - Minimizar idle time
2. Testing Framework¶
Unit Tests:
- test_parallel_detection() - detectar branches correctos
- test_thread_pool() - thread pool funciona
- test_work_distribution() - distribución equitativa
- test_synchronization() - sincronización correcta
- test_simd_processing() - SIMD works
Integration Tests:
- test_parallel_execution() - ejecución paralela correcta
- test_serial_vs_parallel() - resultados idénticos
- test_mixed_serial_parallel() - mix funciona
Performance Tests:
- benchmark_speedup_2_cores() - speedup en 2 cores
- benchmark_speedup_4_cores() - speedup en 4 cores
- benchmark_speedup_8_cores() - speedup en 8 cores
- benchmark_overhead() - overhead de paralelización
Stress Tests:
- test_many_threads() - 100+ threads
- test_long_running() - estabilidad 24h
- test_load_balance() - balance dinámico
Coverage Target: >85%
3. Documentación¶
Theory Documentation:
# Parallel Processing
## Amdahl's Law
Speedup = 1 / ((1-P) + P/N)
- P = fraction that can be parallelized
- N = number of processors
Example: 80% parallelizable, 4 cores
Speedup = 1 / (0.2 + 0.8/4) = 2.5x
## Independent Subgraphs
Subgraphs are independent if no path exists between them.
Can be processed on separate threads simultaneously.
## Dependency Levels
Level 0: No dependencies (sources)
Level 1: Depends only on level 0
Level N: Depends on level N-1
Nodes at same level with no inter-dependencies → parallel
## SIMD Processing
Process multiple channels with single instruction.
AVX: 8 floats simultaneously
Requirements:
- Identical processing
- Same parameters
- Aligned memory
Performance Analysis:
# Expected Speedups
## 2-Core System
- Best case: 1.8x (90% efficiency)
- Typical: 1.5x (75% efficiency)
- Overhead: thread sync, cache effects
## 4-Core System
- Best case: 3.2x (80% efficiency)
- Typical: 2.5x (62% efficiency)
## 8-Core System
- Best case: 5.6x (70% efficiency)
- Typical: 4.0x (50% efficiency)
- Diminishing returns due to dependencies
Usage Examples:
// Example: Enable parallel processing
AudioGraph graph;
// ... build graph with parallel branches ...
ParallelGraphExecutor executor(4); // 4 threads
executor.prepare(graph);
// Processing automatically parallelized
executor.process(inputBuffer, outputBuffer);
// Statistics
auto stats = executor.getStats();
std::cout << "Speedup: " << stats.speedup << "x" << std::endl;
std::cout << "Thread efficiency: " << stats.efficiency << "%" << std::endl;
4. Interfaces y Conexiones¶
Parallel Execution API:
class ParallelGraphExecutor {
public:
ParallelGraphExecutor(int numThreads = 0); // 0 = auto-detect
void prepare(const AudioGraph& graph);
void process(AudioBuffer& input, AudioBuffer& output);
// Configuration
void setThreadCount(int count);
void enableWorkStealing(bool enable);
void enableSIMD(bool enable);
// Statistics
struct Stats {
float speedup;
float efficiency; // 0-100%
int activeThreads;
std::map<NodeID, float> perNodeCPU;
};
Stats getStats() const;
};
Thread Safety:
// Graph modification is NOT thread-safe during processing
// Use double-buffering for dynamic reconfiguration
class ThreadSafeGraph {
std::shared_ptr<AudioGraph> activeGraph;
std::shared_ptr<AudioGraph> shadowGraph;
std::atomic<bool> swapPending;
void modifyGraph(std::function<void(AudioGraph&)> modifier);
void swapGraphs(); // At safe point
};
ENTREGABLES:¶
- ParallelDetector implementation
- ThreadPool implementation
- ParallelGraphExecutor
- SIMD optimizations
- Work stealing scheduler
- 15+ unit tests
- Performance benchmarks on 2/4/8 cores
- Scalability analysis
- Thread-safety documentation
- Optimization guide
TAREA 10: Dynamic Reconfiguration - Reconfiguración Dinámica¶
Carpeta: 05_11_09_dynamic_reconfiguration
Prioridad: ALTA
Dependencias: 00_graph_core, 04_buffer_management
Estimación: 6-8 semanas
DESARROLLO:¶
1. Core Implementation¶
1.1 Dynamic Graph Manager
class DynamicGraphManager {
std::atomic<AudioGraph*> activeGraph;
std::unique_ptr<AudioGraph> shadowGraph;
CrossfadeBuffer crossfader;
void reconfigure(const GraphChange& change);
void processWithCrossfade();
};
1.2 Glitch-Free Crossfade
class CrossfadeBuffer {
enum State { IDLE, FADING_OUT, FADING_IN, CROSSFADING };
State state;
float position; // 0.0 - 1.0
float duration; // samples
void start(float durationMs);
void process(AudioBuffer& oldSignal, AudioBuffer& newSignal, AudioBuffer& output);
};
1.3 Hot-Swap System - Bypass old node - Insert new node in parallel - Match state if possible - Crossfade old → new - Remove old node
1.4 State Transfer
class StateTransfer {
bool canTransfer(const GraphNode& from, const GraphNode& to);
void transfer(GraphNode& from, GraphNode& to);
// Transferable state:
// - Parameter values
// - Delay line contents
// - Filter states (if same type)
};
1.5 Atomic Operations - Add node atomically - Remove node atomically - Reconnect atomically - Rollback on failure
2. Testing Framework¶
Unit Tests:
- test_crossfade() - crossfade suave
- test_hot_swap() - swap sin glitches
- test_state_transfer() - transferir estado
- test_atomic_operations() - operaciones atómicas
- test_rollback() - rollback en error
Integration Tests:
- test_live_reconfiguration() - reconfig durante procesamiento
- test_multiple_changes() - múltiples cambios seguidos
- test_complex_swap() - swap de subgrafo
Audio Quality Tests:
- test_no_clicks() - zero clicks detectados
- test_no_pops() - zero pops detectados
- test_smooth_transition() - transición imperceptible
- test_latency_preserved() - latencia consistente
Performance Tests:
- benchmark_reconfiguration_time() - tiempo de reconfig
- benchmark_crossfade_overhead() - overhead de crossfade
Stress Tests:
- test_rapid_changes() - 10 cambios/segundo
- test_long_running() - estabilidad 24h con cambios
Coverage Target: >90%
3. Documentación¶
Conceptual Documentation:
# Dynamic Reconfiguration
## Challenge
Changing graph topology while processing audio causes glitches.
## Solution: Shadow Graph Technique
1. Clone active graph to shadow
2. Apply changes to shadow
3. Prepare shadow graph
4. Crossfade from active to shadow
5. Swap graphs atomically
## Crossfade Strategy
- Duration: 50ms típico
- Curve: Equal-power for constant level
- Application: Mix outputs during transition
## State Transfer
When swapping similar nodes, transfer state for continuity:
- **Parameters:** Always transfer if compatible
- **Delay lines:** Transfer if same size
- **Filters:** Transfer if same type
- **Envelopes:** Transfer phase if possible
Non-transferable: Different algorithms start fresh
API Documentation:
/**
* @class DynamicGraphManager
* @brief Manages glitch-free dynamic graph reconfiguration
*
* Allows modifying graph topology while audio is processing.
* Uses shadow graph technique with crossfading to avoid artifacts.
*
* @performance Reconfiguration time: <50ms typical
* @audio_quality Zero detectable clicks or pops
*/
Usage Examples:
// Example: Hot-swap effect
DynamicGraphManager manager;
manager.setActiveGraph(std::move(graph));
// User switches from Reverb A to Reverb B
GraphChange change;
change.type = GraphChange::HOT_SWAP;
change.oldNode = reverbA_id;
change.newNode = createReverbB();
change.transferState = true;
change.crossfadeDuration = 50.0f; // 50ms
manager.reconfigure(change);
// → Seamless transition, no glitches
// Example: Add effect to chain
GraphChange change;
change.type = GraphChange::INSERT_NODE;
change.newNode = createChorus();
change.insertAfter = delay_id;
change.crossfadeDuration = 30.0f;
manager.reconfigure(change);
4. Interfaces y Conexiones¶
Reconfiguration API:
class DynamicGraphManager {
public:
void setActiveGraph(std::unique_ptr<AudioGraph> graph);
// Reconfiguration operations
void addNode(std::unique_ptr<GraphNode> node,
const ConnectionSpec& connections,
float crossfadeMs = 50.0f);
void removeNode(NodeID node,
float crossfadeMs = 50.0f);
void replaceNode(NodeID oldNode,
std::unique_ptr<GraphNode> newNode,
bool transferState = true,
float crossfadeMs = 50.0f);
void reconnect(NodeID from, NodeID to,
const ConnectionSpec& newConnections,
float crossfadeMs = 50.0f);
// Processing (call from audio thread)
void process(AudioBuffer& input, AudioBuffer& output);
// Status
bool isReconfiguring() const;
float getReconfigurationProgress() const; // 0.0 - 1.0
};
struct GraphChange {
enum Type { ADD_NODE, REMOVE_NODE, HOT_SWAP, RECONNECT };
Type type;
// ... details
};
Thread Safety:
// Reconfiguration thread-safe with processing
// - Reconfig operations: Any thread
// - Process: Audio thread only
// - Internally synchronized with atomics
ENTREGABLES:¶
- DynamicGraphManager implementation
- Crossfade system
- Hot-swap system
- State transfer system
- Atomic operations
- 15+ unit tests
- Audio quality test suite (click/pop detection)
- Performance benchmarks
- Thread-safety analysis
- Complete documentation
TAREA 11: Graph Optimization - Optimización del Grafo¶
Carpeta: 05_11_10_graph_optimization
Prioridad: MEDIA
Dependencias: 00_graph_core, 02_topological_sorting
Estimación: 6-8 semanas
DESARROLLO:¶
1. Core Implementation¶
1.1 Dead Node Eliminator
class DeadNodeEliminator {
std::set<NodeID> findDeadNodes(const AudioGraph& graph);
void eliminateDeadNodes(AudioGraph& graph);
};
1.2 Node Fusion Engine
class NodeFusionEngine {
struct FusionPattern {
std::string pattern; // e.g., "Gain->Gain"
std::function<std::unique_ptr<GraphNode>(const std::vector<GraphNode*>&)> fuse;
};
std::vector<FusionPattern> patterns;
void detectAndFuse(AudioGraph& graph);
};
1.3 Buffer Coalescer
class BufferCoalescer {
void analyzeBufferUsage(const AudioGraph& graph);
void coalesceBuffers(AudioGraph& graph);
size_t getMemorySavings() const;
};
1.4 Constant Propagation - Detectar nodos con parámetros constantes - Pre-calcular resultados si posible - Reemplazar con valores constantes
1.5 Common Subexpression Elimination - Detectar cálculos duplicados - Reusar resultados - Reducir redundancia
2. Testing Framework¶
Unit Tests:
- test_dead_node_detection() - detectar nodos muertos
- test_node_fusion() - fusionar nodos correctamente
- test_buffer_coalescing() - coalescer buffers
- test_constant_propagation() - propagar constantes
- test_optimization_correctness() - resultado igual pre/post
Integration Tests:
- test_optimization_pipeline() - múltiples optimizaciones
- test_iterative_optimization() - optimizar hasta convergencia
- test_complex_graph_optimization() - grafo real grande
Performance Tests:
- benchmark_optimization_time() - tiempo de optimización
- benchmark_cpu_improvement() - mejora de CPU
- benchmark_memory_improvement() - reducción memoria
Verification Tests:
- test_audio_equivalence() - audio idéntico pre/post
- test_parameter_response() - parámetros funcionan igual
- test_latency_preservation() - latencia preserved
Coverage Target: >85%
3. Documentación¶
Optimization Techniques:
# Graph Optimization Techniques
## 1. Dead Node Elimination
Remove nodes that don't contribute to output.
Algorithm: Backward traversal from outputs
- Mark all nodes reachable from outputs as "live"
- Remove unmarked nodes
Example:
Before: Input → Gain → [Muted] → Output
After: Input → Output
## 2. Node Fusion
Combine compatible nodes into single node.
Patterns:
- **Gain + Gain:** Single gain with product
- **Delay + Delay:** Single delay with sum
- **Filter cascade:** Combined transfer function
Example:
Before: Signal → Gain(2x) → Gain(3x) → Output
After: Signal → Gain(6x) → Output
## 3. Buffer Coalescing
Share memory between non-overlapping buffers.
Benefit: 50-70% memory reduction typical
## 4. Constant Propagation
Pre-calculate nodes with constant parameters.
Example:
Gain node with gain=1.0 → Pass-through (no-op)
Gain node with gain=0.0 → Silence generator
## 5. Common Subexpression Elimination
Reuse duplicate calculations.
Example:
Input → [LPF@1kHz] → OutputA
→ [LPF@1kHz] → OutputB
Optimized:
Input → [LPF@1kHz] → Split → OutputA
→ OutputB
API Documentation:
/**
* @class GraphOptimizer
* @brief Applies optimization passes to audio graph
*
* Performs multiple optimization techniques to improve performance:
* - Dead code elimination
* - Node fusion
* - Buffer coalescing
* - Constant propagation
*
* @note Always preserves audio output equivalence
* @performance Typical improvement: 30-50% CPU reduction
*/
Usage Examples:
// Example: Optimize graph
AudioGraph graph;
// ... build complex graph ...
GraphOptimizer optimizer;
optimizer.addPass(std::make_unique<DeadNodeEliminator>());
optimizer.addPass(std::make_unique<NodeFusionEngine>());
optimizer.addPass(std::make_unique<BufferCoalescer>());
auto result = optimizer.optimize(graph);
std::cout << "Nodes removed: " << result.nodesRemoved << std::endl;
std::cout << "Nodes fused: " << result.nodesFused << std::endl;
std::cout << "Memory saved: " << result.memorySaved << " bytes" << std::endl;
std::cout << "CPU improvement: " << result.cpuImprovement << "%" << std::endl;
4. Interfaces y Conexiones¶
Optimizer API:
class GraphOptimizer {
public:
// Optimization passes
void addPass(std::unique_ptr<OptimizationPass> pass);
void removePass(const std::string& passName);
// Optimize
struct OptimizationResult {
int nodesRemoved;
int nodesFused;
size_t memorySaved;
float cpuImprovement; // Percentage
std::vector<std::string> appliedOptimizations;
};
OptimizationResult optimize(AudioGraph& graph);
// Configuration
void setAggressiveness(int level); // 0-3
void enablePass(const std::string& passName, bool enable);
// Verification
bool verifyEquivalence(const AudioGraph& original,
const AudioGraph& optimized);
};
class OptimizationPass {
public:
virtual std::string getName() const = 0;
virtual bool apply(AudioGraph& graph) = 0;
virtual bool canApply(const AudioGraph& graph) const = 0;
};
Optimization Passes:
// Built-in passes
class DeadNodeEliminationPass : public OptimizationPass { };
class NodeFusionPass : public OptimizationPass { };
class BufferCoalescingPass : public OptimizationPass { };
class ConstantPropagationPass : public OptimizationPass { };
class BypassEliminationPass : public OptimizationPass { };
class IdentityRemovalPass : public OptimizationPass { };
ENTREGABLES:¶
- DeadNodeEliminator
- NodeFusionEngine with pattern library
- BufferCoalescer
- ConstantPropagation pass
- CSE (Common Subexpression Elimination) pass
- GraphOptimizer framework
- 15+ unit tests
- Optimization verification suite
- Performance comparison benchmarks
- Optimization guide documentation
TAREA 12: Visualization System - Sistema de Visualización¶
Carpeta: 05_11_11_visualization_system
Prioridad: MEDIA
Dependencias: Todo el subsistema
Estimación: 4-6 semanas
DESARROLLO:¶
1. Core Implementation¶
1.1 Graph Renderer
class GraphRenderer {
enum LayoutAlgorithm { HIERARCHICAL, FORCE_DIRECTED, CIRCULAR };
void setLayout(LayoutAlgorithm algo);
void render(const AudioGraph& graph, RenderTarget& target);
};
1.2 Layout Algorithms - Hierarchical: Layered by dependency (good for DAGs) - Force-directed: Physics simulation (general graphs) - Circular: Nodes in circle (cyclic graphs)
1.3 Visual Elements
struct NodeVisual {
Shape shape; // Rectangle/Circle by type
Color color; // By category
std::string label;
Position position;
// Annotations
float cpuUsage;
float peakLevel;
bool isClipping;
bool isBypassed;
};
struct EdgeVisual {
LineStyle style; // Solid=audio, dashed=control
float width; // Proportional to channels
Color color; // Green=active, gray=muted
bool animated; // Show signal flow
};
1.4 Real-Time Monitoring
class GraphMonitor {
struct NodeMetrics {
float cpuUsage;
float peakLevel;
int processCallsPerSec;
bool isClipping;
float latencyMs;
};
void updateMetrics();
void renderOverlay(GraphRenderer& renderer);
};
1.5 Interactive Features - Node selection - Parameter editing - Connection dragging - Zoom and pan - Search/filter nodes
2. Testing Framework¶
Unit Tests:
- test_hierarchical_layout() - layout correcto
- test_force_directed_layout() - convergencia
- test_node_rendering() - render correcto
- test_edge_rendering() - edges correctos
- test_metrics_collection() - métricas precisas
Visual Tests:
- test_simple_chain_visual() - cadena simple se ve bien
- test_complex_graph_visual() - grafo complejo legible
- test_color_coding() - colores informativos
- test_interactive_features() - interacción funciona
Performance Tests:
- benchmark_rendering() - FPS con 100 nodes
- benchmark_layout_calculation() - tiempo de layout
Coverage Target: >80%
3. Documentación¶
Visualization Guide:
# Graph Visualization
## Visual Language
### Node Shapes
- **Circle:** Sources (input, oscillators, generators)
- **Rectangle:** Processors (filters, effects)
- **Hexagon:** Outputs (to DAC, file, etc.)
### Node Colors
- **Blue:** Input/Source
- **Green:** Effects/Processors
- **Yellow:** Analysis/Meters
- **Red:** Output/Destination
- **Gray:** Bypassed
### Edge Styles
- **Solid:** Audio signal
- **Dashed:** Control signal
- **Dotted:** MIDI
- **Thick:** Multi-channel
### Edge Colors
- **Green:** Active, signal present
- **Gray:** Muted or inactive
- **Red:** Clipping detected
## Layout Algorithms
### Hierarchical (Sugiyama)
Best for: DAGs with clear flow direction
Pros: Clear dependencies
Cons: Not for cyclic graphs
### Force-Directed (Fruchterman-Reingold)
Best for: General graphs
Pros: Good for any graph
Cons: Slow for large graphs (>100 nodes)
### Circular
Best for: Feedback-heavy graphs
Pros: Shows cycles clearly
Cons: Can be cluttered
## Real-Time Metrics
### CPU Usage
Color intensity: Light → Dark = Low → High CPU
### Audio Levels
Meter beside node shows peak level
Red indicator if clipping
### Latency
Number on node shows latency in milliseconds
Usage Examples:
// Example: Visualize graph
GraphRenderer renderer;
renderer.setLayout(LayoutAlgorithm::HIERARCHICAL);
GraphMonitor monitor;
monitor.attachToGraph(graph);
// Render loop
while (running) {
monitor.updateMetrics();
RenderTarget target = getWindow();
renderer.render(graph, target);
monitor.renderOverlay(renderer);
target.present();
}
4. Interfaces y Conexiones¶
Visualization API:
class GraphVisualizer {
public:
// Setup
void setGraph(const AudioGraph* graph);
void setLayout(LayoutAlgorithm algo);
// Rendering
void render(RenderTarget& target);
void update(float deltaTime);
// Interaction
NodeID getNodeAtPosition(Point pos);
void selectNode(NodeID node);
void deselectAll();
// Configuration
void showMetrics(bool show);
void showEdgeFlow(bool animate);
void setColorScheme(ColorScheme scheme);
// Export
void exportToSVG(const std::string& path);
void exportToPNG(const std::string& path, int width, int height);
};
class GraphMonitor {
public:
void attachToGraph(const AudioGraph* graph);
void detach();
void enableMetric(MetricType type);
void disableMetric(MetricType type);
NodeMetrics getNodeMetrics(NodeID node) const;
std::vector<NodeMetrics> getAllMetrics() const;
};
Platform Backends:
// Abstract render target
class RenderTarget {
public:
virtual void drawNode(const NodeVisual& node) = 0;
virtual void drawEdge(const EdgeVisual& edge) = 0;
virtual void drawText(const std::string& text, Point pos) = 0;
virtual void present() = 0;
};
// Implementations
class OpenGLRenderTarget : public RenderTarget { };
class Direct2DRenderTarget : public RenderTarget { };
class SVGRenderTarget : public RenderTarget { };
ENTREGABLES:¶
- GraphRenderer with 3 layout algorithms
- NodeVisual and EdgeVisual structures
- GraphMonitor for real-time metrics
- Interactive features (select, edit, drag)
- Export to SVG/PNG
- OpenGL render backend
- 10+ unit tests
- Visual test suite
- Performance benchmarks
- User guide with examples
TAREAS DE INTEGRACIÓN Y FINALIZACIÓN¶
TAREA FINAL-A: Integration Testing & Validation¶
Carpeta: 05_11_test_integration
Prioridad: CRÍTICA
Dependencias: Todas las tareas anteriores
Estimación: 4-6 semanas
DESARROLLO:¶
1. End-to-End Test Suite¶
E2E Test Scenarios:
- test_simple_audio_chain() - Input → Gain → Filter → Output
- test_parallel_effects() - Split → [Reverb, Delay] → Mix
- test_feedback_loop() - Delay with feedback
- test_multirate_chain() - 4x oversample → Saturator → downsample
- test_dynamic_reconfiguration() - Hot-swap effects
- test_complex_graph() - 50+ nodes multi-path
- test_subgraph_integration() - Usar subgraph templates
Audio Quality Validation: - THD+N measurement - Frequency response analysis - Phase coherence verification - Latency measurement - Glitch detection
Real-World Scenarios: - Channel strip (gain + EQ + comp + gate) - Mastering chain (multiband + limiter + dither) - Modular synthesizer (oscs + filters + envs) - Effect rack (multiple parallel/serial effects)
2. Cross-Subsystem Validation¶
Validaciones con otros subsistemas: - 00_catalog: Nodes registrados correctamente - 01_hierarchy: Niveles L0-L3 funcionan como nodos - 02_dependency_graph: Dependencies correctas - 05_topology_design: Topologías válidas - 06_optimization_layer: Optimizaciones aplicadas - 10_cells_l2: Células como nodos principales - 12_calibration: Calibración de grafos - 13_engines_l3: Engines como grafos - 30_testing_framework: Tests integrados - 31_observability: Métricas reportadas
3. Regression Test Automation¶
Automated Regression Suite: - Nightly builds with full test suite - Performance regression detection - Audio output verification (golden files) - Memory leak detection - Crash reporting
CI/CD Integration:
# .github/workflows/graph_system_tests.yml
name: Graph System Tests
on: [push, pull_request]
jobs:
test:
runs-on: [windows-latest, ubuntu-latest, macos-latest]
steps:
- name: Build
- name: Unit Tests
- name: Integration Tests
- name: Performance Tests
- name: Audio Quality Tests
- name: Memory Tests
4. Performance Validation Suite¶
Performance Benchmarks: - Small graph (10 nodes): <1% CPU overhead - Medium graph (50 nodes): <3% CPU overhead - Large graph (100 nodes): <5% CPU overhead - Parallel speedup: 3x on 4-core - Memory efficiency: 50%+ reduction via pooling - Latency compensation: ±1 sample accuracy
5. Stress & Load Testing¶
Stress Tests: - 1000+ node graph - Rapid reconfiguration (100 changes/sec) - Long-running stability (24h+ continuous) - Memory stress (create/destroy 10000 graphs) - Thread stress (100+ concurrent threads)
ENTREGABLES:¶
- 50+ end-to-end tests
- Cross-subsystem validation suite
- Automated regression tests
- CI/CD pipeline configuration
- Performance validation suite
- Stress test suite
- Test coverage report (>90% system-wide)
- Performance comparison report
- Integration test documentation
TAREA FINAL-B: System Integration¶
Carpeta: 05_11_interfaces
Prioridad: ALTA
Dependencias: Todas las tareas de desarrollo
Estimación: 3-4 semanas
DESARROLLO:¶
1. Conectores con Subsistemas Hermanos¶
Symlink Implementation:
# Conexiones según documento de arquitectura
05_11_GRAPH_SYSTEM/
├── component_catalog/ → ../00_catalog_registry/
├── hierarchy/ → ../01_hierarchy_framework/
├── dependency_base/ → ../02_dependency_graph/
├── topology_theory/ → ../05_topology_design/
├── optimization/ → ../06_optimization_layer/
├── cell_nodes/ → ../10_cells_l2/
├── calibration/ → ../12_calibration_system/
├── engine_graphs/ → ../13_engines_l3/
├── graph_tests/ → ../30_testing_framework/graphs/
└── monitoring/ → ../31_observability_system/
Interface Adapters:
// Adapter para cells L2
class CellNodeAdapter {
static std::unique_ptr<GraphNode> wrapCell(std::unique_ptr<CellL2> cell);
};
// Adapter para engines L3
class EngineGraphAdapter {
static AudioGraph createGraphFromEngine(const EngineL3& engine);
};
// Adapter para optimization layer
class OptimizationAdapter {
static void applyOptimizations(AudioGraph& graph,
const OptimizationHints& hints);
};
2. Event Bus Implementation¶
Event System:
class GraphEventBus {
public:
// Event types
enum class EventType {
NODE_ADDED,
NODE_REMOVED,
CONNECTION_MADE,
CONNECTION_BROKEN,
GRAPH_VALIDATED,
OPTIMIZATION_APPLIED,
LATENCY_CHANGED,
ERROR_OCCURRED
};
// Subscribe
void subscribe(EventType type, std::function<void(const GraphEvent&)> handler);
void unsubscribe(EventType type, int subscriptionId);
// Publish
void publish(const GraphEvent& event);
};
Integration Events:
// Para observability system
bus.subscribe(EventType::NODE_ADDED, [](const GraphEvent& e) {
ObservabilitySystem::logEvent("Node added", e.nodeId);
});
// Para calibration system
bus.subscribe(EventType::GRAPH_VALIDATED, [](const GraphEvent& e) {
CalibrationSystem::recalibrate(e.graphId);
});
3. Shared State Management¶
Graph Registry:
class GraphRegistry {
static GraphRegistry& getInstance();
void registerGraph(const std::string& name, std::shared_ptr<AudioGraph> graph);
std::shared_ptr<AudioGraph> getGraph(const std::string& name);
void unregisterGraph(const std::string& name);
std::vector<std::string> listGraphs() const;
};
Node Type Registry:
class NodeTypeRegistry {
using NodeFactory = std::function<std::unique_ptr<GraphNode>()>;
void registerNodeType(const std::string& type, NodeFactory factory);
std::unique_ptr<GraphNode> createNode(const std::string& type);
bool isTypeRegistered(const std::string& type) const;
std::vector<std::string> listTypes() const;
};
4. Communication Protocols¶
Serialization Protocol:
// JSON serialization
class GraphSerializer {
json serialize(const AudioGraph& graph);
std::unique_ptr<AudioGraph> deserialize(const json& data);
};
// Binary serialization (más eficiente)
class BinaryGraphSerializer {
std::vector<uint8_t> serialize(const AudioGraph& graph);
std::unique_ptr<AudioGraph> deserialize(const std::vector<uint8_t>& data);
};
Network Protocol (futuro - distributed processing):
// Remote graph control
class RemoteGraphController {
void connectToRemote(const std::string& host, int port);
void sendCommand(const GraphCommand& cmd);
GraphStatus getStatus();
};
ENTREGABLES:¶
- Symlinks implementados
- Interface adapters para cada subsistema
- Event bus system
- Graph registry
- Node type registry
- Serialization protocols (JSON + Binary)
- Integration test suite
- Communication protocol documentation
- Integration examples
TAREA FINAL-C: Documentation Package¶
Carpeta: 05_11_documentation
Prioridad: ALTA
Dependencias: Todo implementado
Estimación: 3-4 semanas
DESARROLLO:¶
1. Complete API Reference¶
API Documentation Structure:
05_11_documentation/api/
├── 00_graph_core.md
├── 01_topology_validation.md
├── 02_topological_sorting.md
├── 03_latency_management.md
├── 04_buffer_management.md
├── 05_routing_matrices.md
├── 06_multirate_processing.md
├── 07_subgraph_abstraction.md
├── 08_parallel_processing.md
├── 09_dynamic_reconfiguration.md
├── 10_graph_optimization.md
└── 11_visualization_system.md
Each API doc includes: - Class reference - Method signatures - Parameter descriptions - Return values - Exceptions - Examples - Performance notes - Thread-safety
2. Developer Guide¶
Developer Guide Contents:
# Graph System Developer Guide
## Table of Contents
1. Introduction
2. Getting Started
- Hello World Graph
- Basic Operations
3. Core Concepts
- Nodes and Edges
- Ports and Connections
- Processing Order
4. Advanced Topics
- Parallel Processing
- Multi-Rate Graphs
- Dynamic Reconfiguration
5. Best Practices
- Performance Optimization
- Memory Management
- Error Handling
6. Troubleshooting
- Common Errors
- Debugging Tools
7. Examples
- Channel Strip
- Effect Rack
- Synthesizer Voice
3. User Manual¶
User Manual (for end users of tools built with Graph System):
# Graph System User Manual
## For Audio Developers
- Building Your First Audio Graph
- Common Patterns
- Performance Tuning
- Visualization Tools
## For Plugin Developers
- Integrating Graph System
- Best Practices
- API Usage Examples
## For DAW Developers
- Hosting Graph-Based Plugins
- Graph Visualization
- Performance Monitoring
4. Migration Guides¶
Migration Documentation:
# Migration Guides
## From Simple Audio Chain to Graph System
Guide for upgrading linear processing to graph-based
## From Other Graph Frameworks
- From JUCE AudioProcessorGraph
- From Max/MSP gen~
- From FAUST
## Version Migration
- 1.0 → 2.0 Breaking Changes
- Deprecation Policy
5. Architecture Diagrams¶
Diagram Types: - System architecture overview - Class hierarchy diagrams - Sequence diagrams for key operations - Data flow diagrams - State machine diagrams - Component interaction diagrams
Tools: - PlantUML for UML diagrams - Graphviz for graph visualizations - Mermaid for flowcharts - Draw.io for architecture diagrams
6. Example Projects¶
Example Suite: 1. simple_chain - Basic gain → filter → output 2. parallel_effects - Parallel processing with mix 3. feedback_delay - Feedback loop example 4. multiband_processor - Multi-rate processing 5. dynamic_fx_rack - Hot-swappable effects 6. channel_strip - Complete channel strip 7. modular_synth - Modular synthesis example 8. mastering_chain - Professional mastering chain
Each example includes: - Source code - Detailed comments - Build instructions - Expected output - Performance metrics
ENTREGABLES:¶
- Complete API reference (1000+ pages)
- Developer guide (200+ pages)
- User manual (100+ pages)
- Migration guides
- 50+ architecture diagrams
- 8+ example projects
- Video tutorials (10+ videos)
- Interactive documentation website
- PDF export of all documentation
MÉTRICAS DE ÉXITO FINALES¶
Capacidad Técnica¶
- Soporta grafos de 100+ nodos @ 48kHz, 512 samples
- 100% detección de ciclos y validación de tipos
- Compensación de latencia ±1 sample
- 50%+ reducción memoria via buffer sharing
- 3-4x speedup en hardware 8-core
- <50ms reconfiguration time
- Zero glitches en reconfiguración
- 30%+ mejora CPU via optimización
Calidad de Código¶
- >90% test coverage global
- Zero memory leaks
- Zero crashes en 24h stress test
- Documentación completa
- API clara y consistente
Developer Experience¶
- 10x más rápido construir sistemas complejos
- Visualización clara de cualquier grafo
- 80%+ reusabilidad via subgraphs
- Debugging eficiente con herramientas visuales
Performance¶
- <1% overhead en grafo de 10 nodos
- <3% overhead en grafo de 50 nodos
- <5% overhead en grafo de 100 nodos
- Linear scaling con número de nodos
- Real-time safe (no allocations en audio thread)
CRONOGRAMA ESTIMADO¶
Fase 1: Fundamentos (Semanas 1-8)¶
- Tarea 1: Graph Core
Fase 2: Validación y Ordenamiento (Semanas 9-16)¶
- Tarea 2: Topology Validation
- Tarea 3: Topological Sorting
Fase 3: Gestión de Recursos (Semanas 17-28)¶
- Tarea 4: Latency Management
- Tarea 5: Buffer Management
Fase 4: Routing Avanzado (Semanas 29-42)¶
- Tarea 6: Routing Matrices
- Tarea 7: Multi-Rate Processing
- Tarea 8: Subgraph Abstraction
Fase 5: Optimización (Semanas 43-58)¶
- Tarea 9: Parallel Processing
- Tarea 10: Dynamic Reconfiguration
- Tarea 11: Graph Optimization
Fase 6: Herramientas (Semanas 59-64)¶
- Tarea 12: Visualization System
Fase 7: Integración Final (Semanas 65-76)¶
- Tarea Final-A: Integration Testing
- Tarea Final-B: System Integration
- Tarea Final-C: Documentation Package
TOTAL: 76 semanas (~18 meses)
CONCLUSIÓN¶
El Graph System es la columna vertebral de toda la arquitectura DSP de AudioLab. Este plan de desarrollo proporciona una ruta clara y estructurada para implementar un sistema de grafos de clase mundial que permite:
✅ Flexibilidad ilimitada - Cualquier topología imaginable ✅ Seguridad garantizada - Validación automática de correctitud ✅ Performance óptimo - Paralelización y optimización automáticas ✅ Desarrollo rápido - 10x más productivo con subgraphs y herramientas ✅ Debugging eficiente - Visualización y monitoreo en tiempo real
El sistema resultante no solo será técnicamente superior, sino también developer-friendly y production-ready para proyectos de audio profesional del más alto nivel.
Generado: 2025-10-14 Autor: AudioLab Development Team Versión: 1.0.0