05_16_02_gpu_variants¶
GPU-Accelerated Audio Processing Variants¶
Status: βΈοΈ NOT STARTED - Awaiting Foundation Completion Priority: HIGH (Critical Path) Dependencies: TAREA 0 (Variant Framework) Estimated Effort: 4-6 weeks
π― Purpose¶
GPU variants leverage graphics processing units to achieve 50-200x speedups for parallelizable audio operations. GPUs excel at processing large buffers with thousands of parallel threads, making them ideal for offline rendering, convolution, FFT, and batch processing.
Why GPU Acceleration?¶
- Massive Parallelism: 1000s of cores vs 8-32 CPU cores
- High Bandwidth: 500+ GB/s memory bandwidth
- Specialized Hardware: Tensor cores for ML-based audio processing
- Cost-Effective: Utilize existing gaming/workstation GPUs
π Planned Features¶
CUDA Variants (NVIDIA GPUs)¶
Target Operations: - Large buffer processing (>4096 samples) - FFT/IFFT (convolution, spectral processing) - FIR filtering (long impulse responses) - Parallel biquad banks (10+ filters) - Gain/Mix with extremely large channel counts - Machine learning inference (denoising, enhancement)
Expected Performance: - FFT: 50-100x vs CPU - FIR Convolution: 100-200x vs CPU - Parallel Processing: 50x+ vs CPU
API:
class CUDAConvolutionVariant : public IVariant {
public:
bool process(const float* input, float* output, size_t numSamples) override;
void setImpulseResponse(const float* ir, size_t irLength);
private:
cudaStream_t stream_;
float* d_input_; // Device memory
float* d_output_;
float* d_ir_;
};
Metal Variants (macOS/iOS)¶
Target Platforms: - macOS (Intel + Apple Silicon) - iOS/iPadOS - Apple Vision Pro
Metal Compute Shaders: - Optimized for Apple GPU architecture - Unified memory on Apple Silicon - Integration with Core Audio
Expected Performance: - M1/M2 GPU: 30-50x vs CPU - Metal Performance Shaders integration
API:
class MetalFFTVariant : public IVariant {
public:
bool process(const float* input, float* output, size_t numSamples) override;
void setFFTSize(size_t fftSize);
private:
id<MTLDevice> device_;
id<MTLCommandQueue> commandQueue_;
id<MTLComputePipelineState> pipeline_;
};
OpenCL Variants (Cross-Platform)¶
Target Hardware: - NVIDIA GPUs - AMD GPUs - Intel GPUs - ARM Mali GPUs - Qualcomm Adreno GPUs
Cross-Platform Strategy: - Portable code for maximum compatibility - Fallback for systems without CUDA/Metal - Mobile device support (Android)
Expected Performance: - Desktop GPU: 40-80x vs CPU - Mobile GPU: 10-20x vs CPU
Vulkan Compute Variants (Modern Cross-Platform)¶
Target: - Next-generation cross-platform GPU compute - Explicit control for maximum performance - Future-proof architecture
ποΈ Proposed Architecture¶
GPU Memory Management¶
βββββββββββββββββββββββββββββββββββββββββββββββββββ
β CPU Memory β
β ββββββββββββββββ ββββββββββββββββ β
β β Input Buffer β β Output Bufferβ β
β ββββββββ¬ββββββββ ββββββββ²ββββββββ β
β β Upload β Download β
βββββββββββΌβββββββββββββββββββββββββΌββββββββββββββ
β β
βββββββββββΌβββββββββββββββββββββββββΌββββββββββββββ
β GPU Memory β
β ββββββββββββββββ ββββββββββββββββ β
β β Device Input β Process β Device Outputβ β
β ββββββββ¬βββββββββββββββββΆββββββββββββββββ β
β β β
β ββββββββΌβββββββββ β
β β Kernel Memory β (IR, coefficients, etc.) β
β βββββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββ
Asynchronous Processing¶
class GPUVariantBase : public IVariant {
protected:
// Asynchronous upload
void uploadAsync(const float* hostData, float* deviceData, size_t size);
// Asynchronous download
void downloadAsync(const float* deviceData, float* hostData, size_t size);
// Wait for completion
void synchronize();
// Stream management
void* stream_; // CUDA stream, Metal command buffer, etc.
};
Buffer Size Considerations¶
Optimal Buffer Sizes: - Minimum: 4096 samples (GPU overhead amortized) - Recommended: 8192-16384 samples - Maximum: Limited by GPU memory
Small Buffer Handling: - Buffer accumulation (batch processing) - Hybrid CPU/GPU approach - Automatic fallback to SIMD
π Performance Targets¶
FFT Variants¶
| Operation | Buffer Size | CPU (Scalar) | CPU (AVX2) | GPU (CUDA) | Speedup |
|---|---|---|---|---|---|
| FFT 4096 | 4096 | 2.0 ms | 0.3 ms | 0.04 ms | 50x |
| FFT 8192 | 8192 | 5.0 ms | 0.8 ms | 0.05 ms | 100x |
| FFT 16384 | 16384 | 12.0 ms | 1.8 ms | 0.08 ms | 150x |
Convolution Variants¶
| IR Length | CPU (Scalar) | CPU (SIMD) | GPU (CUDA) | Speedup |
|---|---|---|---|---|
| 1024 | 50 ms | 8 ms | 0.4 ms | 125x |
| 4096 | 200 ms | 30 ms | 1.2 ms | 167x |
| 16384 | 800 ms | 120 ms | 4.0 ms | 200x |
π οΈ Implementation Plan¶
Phase 1: CUDA Basics (2 weeks)¶
- Week 1:
- CUDA toolkit setup
- Device detection and selection
- Memory allocation/deallocation
-
Simple gain variant (proof of concept)
-
Week 2:
- FFT variant using cuFFT library
- Benchmarking infrastructure
- Error handling
- Memory management optimization
Phase 2: CUDA Advanced (2 weeks)¶
- Week 3:
- Convolution variant using cuFFT
- Overlap-add/overlap-save algorithms
- Streaming support
-
Multi-GPU support (optional)
-
Week 4:
- Parallel biquad banks
- Custom CUDA kernels
- Performance optimization
- Testing and validation
Phase 3: Metal Support (1-2 weeks)¶
- Week 5:
- Metal framework setup
- Device detection (Intel/Apple Silicon)
- Basic compute shaders
-
FFT using Metal Performance Shaders
-
Week 6 (if needed):
- Advanced Metal variants
- Unified memory optimization (Apple Silicon)
- iOS/iPadOS testing
Phase 4: Cross-Platform (1-2 weeks)¶
- Week 7:
- OpenCL setup
- Cross-platform kernel code
-
Testing on AMD/Intel GPUs
-
Week 8 (optional):
- Vulkan compute exploration
- Performance comparison
- Documentation
π§ Technical Challenges¶
1. Latency vs Throughput Trade-off¶
Problem: GPU has high latency (PCIe transfer overhead) Solution: - Only use GPU for large buffers (>4096) - Batch small buffers - Asynchronous transfers
2. Memory Management¶
Problem: Limited GPU memory, transfer overhead Solution: - Persistent GPU memory allocation - Pinned host memory for faster transfers - Memory pooling
3. Real-Time Constraints¶
Problem: GPU scheduling latency Solution: - Dedicated GPU for audio (not shared with graphics) - High-priority GPU streams - Fallback to CPU for small buffers
4. Platform Portability¶
Problem: CUDA (NVIDIA only), Metal (Apple only) Solution: - Abstraction layer (IVariant) - OpenCL as fallback - Automatic platform detection
π Resources Needed¶
Hardware¶
- NVIDIA GPU: RTX 3060+ or A4000+ (CUDA 8.0+)
- Apple Silicon: M1/M2 Mac (Metal support)
- AMD GPU: RX 6000+ (OpenCL/Vulkan testing)
Software¶
- CUDA Toolkit: 11.8+ (NVIDIA)
- Xcode: 14+ (Metal)
- OpenCL SDK: (AMD/Intel)
- cuFFT: (CUDA FFT library)
- Metal Performance Shaders: (Apple)
Knowledge¶
- GPU architecture fundamentals
- CUDA programming
- Metal Shading Language
- OpenCL kernels
- Asynchronous programming
π― Success Criteria¶
Functional Requirements¶
- β FFT variant achieving 50x+ speedup
- β Convolution variant achieving 100x+ speedup
- β Works on NVIDIA (CUDA), Apple (Metal), AMD (OpenCL)
- β Automatic CPU fallback for small buffers
- β <1% accuracy error vs CPU reference
Performance Requirements¶
- β GPU overhead <2ms for buffer β₯4096
- β Memory transfers <1ms per MB
- β Real-time performance for 48kHz/96kHz
Quality Requirements¶
- β Bit-exact results where possible
- β Validated against reference implementations
- β Quality metrics integration
π Documentation Needed¶
- GPU architecture overview
- CUDA/Metal/OpenCL API reference
- Performance benchmarking guide
- Buffer size selection guide
- Troubleshooting (GPU not detected, out of memory, etc.)
- Integration examples
π Integration Points¶
With Variant Framework (05_16_00)¶
// Register GPU variants
auto gpuVariants = createCUDAVariants();
for (auto& variant : gpuVariants) {
dispatcher.registerVariant(std::move(variant), VariantType::GPU, 2.0f);
}
With Quality Metrics (05_18)¶
// Monitor GPU performance
auto gpuMetric = std::make_shared<Metric>("gpu_processing_time_ms", MetricType::GAUGE);
collector->addSource(std::make_shared<VariantProcessingTimeSource>("cuda_fft", &cudaVariant));
β οΈ Risk Assessment¶
| Risk | Probability | Impact | Mitigation |
|---|---|---|---|
| GPU not available on user system | High | High | CPU fallback, clear requirements |
| Transfer overhead too high | Medium | Medium | Batching, async transfers |
| Out of GPU memory | Medium | High | Memory pooling, graceful degradation |
| Platform-specific bugs | Medium | Medium | Extensive testing, OpenCL fallback |
| Real-time latency issues | Low | High | Dedicated GPU streams, profiling |
π Timeline Estimate¶
Total Estimated Time: 4-6 weeks
Breakdown: - CUDA Basic: 2 weeks - CUDA Advanced: 2 weeks - Metal: 1-2 weeks - OpenCL/Vulkan: 1-2 weeks (optional)
Dependencies: - Variant Framework (TAREA 0) must be 100% complete β - Hardware availability (NVIDIA GPU, Mac)
π Getting Started (When Ready)¶
- Review Variant Framework API
- Set up CUDA toolkit or Metal Xcode project
- Implement simple gain variant as proof-of-concept
- Benchmark and validate
- Expand to FFT and convolution
- Document and integrate
Status: βΈοΈ Ready to start after TAREA 1 completion Next Step: CUDA toolkit setup and device detection Contact: performance@audiolab.com
"GPU Variants: When CPU isn't fast enough, go parallel!" πβ‘