05_16_04_precision_variants¶
Multi-Precision Audio Processing Variants¶
Status: βΈοΈ NOT STARTED Priority: MEDIUM Dependencies: TAREA 0 (Variant Framework) Estimated Effort: 2 weeks
π― Purpose¶
Precision variants provide multiple floating-point precision options (float16, float32, float64, fixed-point) to optimize for different use cases: - float16 (half): Mobile GPUs, ML inference (2x memory savings) - float32 (single): Standard audio processing (current default) - float64 (double): High-precision scientific audio (e.g., synthesis) - Fixed-point: Embedded systems, DSPs
π Planned Variants¶
Float16 Variants (GPU/Mobile)¶
class Float16GainVariant : public IVariant {
public:
bool process(const float* input, float* output, size_t numSamples) override;
// Converts to fp16 internally, uses GPU fp16 ops
private:
__half gain_; // 16-bit
};
Use Cases: - Mobile devices (iOS/Android) - GPU processing (Tensor Cores) - ML audio models (inference)
Trade-offs: - 2x memory savings - 2x bandwidth savings - Lower precision (10-bit mantissa vs 23-bit)
Float64 Variants (High Precision)¶
class Float64OscillatorVariant : public IVariant {
public:
bool process(const float* input, float* output, size_t numSamples) override;
// Uses double internally, converts back to float
private:
double phase_;
double phaseIncrement_;
};
Use Cases: - Scientific audio analysis - Long-running synthesis (phase accumulation) - Cascaded filters (error accumulation prevention)
Trade-offs: - Higher precision - 2x memory usage - Slower (no SIMD double on some CPUs)
Fixed-Point Variants (Embedded)¶
class FixedPoint16GainVariant : public IVariant {
public:
bool process(const float* input, float* output, size_t numSamples) override;
// Fixed Q15 format internally
private:
int16_t gain_; // Q15: 1 sign bit, 0 integer bits, 15 fractional bits
};
Use Cases: - Embedded systems without FPU - DSP chips - Low-power devices
π Performance Targets¶
| Variant | Memory Usage | Bandwidth | Speed | Precision |
|---|---|---|---|---|
| float16 | 0.5x | 0.5x | 1.5-2x (GPU) | Medium |
| float32 | 1x | 1x | 1x (baseline) | High |
| float64 | 2x | 2x | 0.5-0.8x | Very High |
| fixed16 | 0.5x | 0.5x | 1.2-1.5x (embedded) | Medium |
π οΈ Implementation Plan¶
Week 1: - Float16 variants for GPU - Conversion helpers (float32 β float16) - Benchmarking on mobile GPUs
Week 2: - Float64 variants for high precision - Fixed-point variants (Q15, Q31) - Validation and documentation
β οΈ Challenges¶
- Precision Loss: float16 has limited range and precision
- Saturation: Fixed-point requires careful overflow handling
- Platform Support: Not all CPUs support fp16 efficiently
- Mixed Precision: Converting between precisions has overhead
Status: βΈοΈ Planned for future development Priority: MEDIUM - Useful for specialized use cases