📊 05_18_QUALITY_METRICS - Sistema de Métricas y Estándares de Calidad¶
Version: 1.0.0 Status: ✅ Production Ready (Phase 1 - Métricas Fundamentales) Position: Subsistema #18 en la jerarquía AudioLab
🎯 Propósito¶
Quality Metrics es el sistema nervioso sensorial de AudioLab: la infraestructura que mide, cuantifica y valida la calidad en todas sus dimensiones - desde la precisión matemática del DSP hasta la experiencia subjetiva del usuario.
¿Por qué es crítico?¶
Sin métricas rigurosas: - ❌ No sabríamos si una optimización mejora realmente el performance - ❌ Los bugs serían subjetivos ("suena raro" vs "THD aumentó 3dB") - ❌ Sería imposible evaluar competitividad - ❌ No podríamos garantizar estándares profesionales
Con Quality Metrics: - ✅ Objetividad: Mediciones científicas reproducibles - ✅ Trazabilidad: Cumplimiento de estándares internacionales (AES17, EBU R128) - ✅ Prevención: Detección automática de regresiones antes de producción - ✅ Competitividad: Benchmarking objetivo contra competidores
📐 Arquitectura del Subsistema¶
05_18_QUALITY_METRICS/
│
├── 05_18_00_metrics_framework/ ⭐ CORE - Infrastructure universal
│ ├── include/
│ │ ├── metrics_core.hpp # Gauge, Counter, Histogram, Summary
│ │ ├── metric_collector.hpp # Multi-source collection
│ │ ├── metric_storage.hpp # Time-series storage
│ │ └── metric_processor.hpp # Aggregation pipeline
│ ├── src/
│ ├── tests/
│ └── examples/
│ └── basic_metrics_example.cpp # Demo completo
│
├── 05_18_01_audio_quality_metrics/ 🎵 Audio Quality
│ ├── include/
│ │ ├── thd_analyzer.hpp # THD measurement (IEEE 1057)
│ │ ├── snr_analyzer.hpp # SNR measurement
│ │ ├── frequency_response.hpp # Freq/phase response
│ │ ├── imd_analyzer.hpp # Intermodulation distortion
│ │ └── psychoacoustic.hpp # LUFS, PEAQ (ITU-R BS.1387)
│ ├── standards/
│ │ └── audio_quality_standards.yaml # Professional/Broadcast/Consumer
│ └── examples/
│
├── 05_18_02_performance_benchmarks/ ⚡ Performance
│ ├── include/
│ │ ├── benchmark_framework.hpp # High-precision benchmarking
│ │ ├── cpu_profiler.hpp # CPU measurement
│ │ ├── memory_profiler.hpp # Memory tracking
│ │ └── latency_meter.hpp # Latency measurement
│ └── benchmarks/
│ ├── dsp_kernels_benchmark.cpp
│ ├── engines_benchmark.cpp
│ └── system_benchmark.cpp
│
├── 05_18_03_code_quality_metrics/ 💻 Code Quality
│ ├── analyzers/
│ │ ├── complexity_analyzer.py # McCabe, Cognitive complexity
│ │ ├── coverage_analyzer.py # Line/Branch/Mutation coverage
│ │ ├── smell_detector.py # Code smells detection
│ │ └── dependency_analyzer.py # Coupling/Cohesion metrics
│ └── configs/
│ └── quality_targets.yaml
│
├── 05_18_04_regression_detection/ 🚨 Regression Detection
│ ├── include/
│ │ ├── regression_detector.hpp # Statistical detection (Z-score, CUSUM)
│ │ ├── baseline_manager.hpp # Baseline tracking
│ │ └── alert_system.hpp # Alert generation
│ └── baselines/
│ └── baseline_metrics.json
│
├── 05_18_05_ab_testing/ 🔬 A/B Testing
│ ├── include/
│ │ ├── ab_framework.hpp # Experimental design
│ │ ├── randomizer.hpp # Latin Square, Block randomization
│ │ └── statistical_test.hpp # t-test, Mann-Whitney U
│ └── experiments/
│
├── 05_18_06_monitoring_dashboards/ 📈 Real-time Dashboards
│ ├── web/
│ │ ├── dashboard.html # Web interface
│ │ ├── visualizations.js # Charts (Waterfall, Heatmap)
│ │ └── styles.css
│ ├── backend/
│ │ ├── dashboard_server.cpp # WebSocket server
│ │ └── websocket_handler.cpp
│ └── configs/
│ └── dashboard_config.yaml
│
├── 05_18_07_statistical_analysis/ 📊 Statistical Tools
│ ├── include/
│ │ ├── descriptive_stats.hpp # Mean, median, std, skewness
│ │ ├── distribution_fitting.hpp # Auto-fit distributions
│ │ └── outlier_detection.hpp # IQR, Z-score, Isolation Forest
│ └── examples/
│
├── 05_18_08_quality_gates/ 🚦 Automated Gates
│ ├── gates/
│ │ ├── commit_gate.yaml # Pre-commit checks
│ │ ├── pr_gate.yaml # Pull request checks
│ │ └── release_gate.yaml # Release validation
│ ├── scripts/
│ │ ├── gate_executor.py # CI/CD integration
│ │ └── gate_reporter.py
│ └── reports/
│
├── 05_18_09_competitive_analysis/ 🏆 Competitive Analysis
│ ├── include/
│ │ ├── competitor_profiler.hpp
│ │ └── comparative_analyzer.hpp
│ ├── benchmarks/
│ │ └── competitive_benchmark_suite.cpp
│ └── reports/
│
├── shared/
│ ├── standards/ # AES17, ITU-R, EBU standards
│ ├── test_signals/ # Standard test signals
│ │ ├── sine_1khz.wav
│ │ ├── two_tone_imd.wav
│ │ └── pink_noise.wav
│ └── utils/
│
├── docs/
│ ├── ARCHITECTURE.md # System architecture
│ ├── METRICS_CATALOG.md # All metrics documented
│ ├── INTEGRATION_GUIDE.md # How to integrate
│ └── STANDARDS.md # Reference standards
│
├── CMakeLists.txt
└── README.md (this file)
🔧 Características Principales¶
05_18_00 - Metrics Framework (Core)¶
Infrastructure universal para cualquier métrica:
✅ Tipos de métricas soportadas: - Gauge: Valores instantáneos (CPU%, Memory, Temperature) - Counter: Valores incrementales (Samples processed, Events) - Histogram: Distribuciones (Latencies, Response times) - Summary: Observaciones sobre ventana temporal
✅ Sistema de recolección multi-fuente: - Periodic: Intervalos fijos (cada 100ms, 1s, etc.) - Continuous: Captura continua con ring buffer - Event-driven: Trigger por eventos específicos - On-demand: Captura manual
✅ Pipeline de procesamiento:
05_18_01 - Audio Quality Metrics¶
Mediciones científicas según estándares internacionales:
✅ Distorsión: - THD (Total Harmonic Distortion) - IEEE Std 1057 - THD+N (THD plus Noise) - IMD (Intermodulation Distortion) - SMPTE RP120
✅ Ruido: - SNR (Signal-to-Noise Ratio) - Dynamic Range - Noise Floor
✅ Frecuencia: - Frequency Response (20Hz-20kHz) - Phase Response - Group Delay
✅ Psicoacústico: - LUFS (Loudness Units Full Scale) - ITU-R BS.1770-4 - PEAQ (Perceptual Evaluation of Audio Quality) - ITU-R BS.1387 - Spectral metrics (Centroid, Spread, Flux)
Estándares cumplidos: - ✅ AES17-2015 (Digital audio measurement) - ✅ ITU-R BS.1770-4 (Loudness measurement) - ✅ EBU R128 (Broadcast loudness) - ✅ IEC 61606 (Audio analyzers)
05_18_02 - Performance Benchmarks¶
Benchmarking científico con control de variables:
✅ Framework de alta precisión: - RDTSC (CPU cycle counter) - Performance counters (cache misses, branch mispredicts) - CPU pinning, turbo boost control - Cache flushing
✅ Métricas: - Timing: median, mean, p95, p99 - Throughput: samples/second, ops/cycle - Efficiency: IPC, cache behavior - Scaling: parallel efficiency
✅ Benchmarks estándar: - DSP kernels (add, multiply, FFT, convolution) - Engines (synth voices, reverb, compressor) - System operations (preset load, plugin instantiation)
05_18_04 - Regression Detection¶
Detección automática de degradación de calidad:
✅ Métodos estadísticos: - Z-score test (confidence level configurable) - CUSUM (Cumulative Sum change detection) - Historical baseline comparison
✅ Thresholds configurables:
✅ Alerting automático: - Email, Slack, PagerDuty - Severity levels (info, warning, error, critical) - Context enrichment
05_18_08 - Quality Gates¶
Checkpoints automatizados en CI/CD:
✅ 3 niveles de gates: 1. Commit Gate: Lint, complexity, unit tests 2. Pull Request Gate: Build, integration tests, performance check 3. Release Gate: Full test suite, certification, security scan
✅ Criterios de calidad: - Build success en todas las plataformas - Coverage mínimo (80%/90%/95%) - Max regresión de performance (1%/5%) - Audio quality standards (THD < 0.01%, SNR > 96dB)
📊 Standards de Calidad¶
| Category | Metric | Professional | Broadcast | Consumer |
|---|---|---|---|---|
| Distortion | THD | < 0.001% (-100dB) | < 0.01% (-80dB) | < 0.01% (-80dB) |
| Noise | SNR | > 120 dB | > 90 dB | > 96 dB |
| Frequency | Flatness | ±0.1 dB | ±0.5 dB | ±0.5 dB |
| Loudness | Integrated | N/A | -23 LUFS ± 1 | N/A |
| Peak | True Peak | N/A | < -1 dBTP | N/A |
🚀 Quick Start¶
Ejemplo 1: Registro de métrica simple¶
#include "metrics_core.hpp"
using namespace audiolab::metrics;
// Registrar métrica de CPU
auto cpu_metric = REGISTER_GAUGE(
"cpu_usage_percent",
"CPU usage percentage",
"%",
MetricDirection::LOWER_BETTER
);
// Registrar valor
cpu_metric->record(45.2);
// Obtener valor actual
std::cout << "CPU: " << cpu_metric->getValue() << "%\n";
Ejemplo 2: Medición de THD¶
#include "thd_analyzer.hpp"
using namespace audiolab::metrics::audio;
// Crear analizador
THDAnalyzer analyzer;
// Analizar señal
auto result = analyzer.analyze(audio_buffer, buffer_size, 1000.0f);
if (result.valid) {
std::cout << "THD: " << result.thd_percent << "%\n";
std::cout << "THD: " << result.thd_db << " dB\n";
// Verificar cumplimiento
if (meetsProfessionalTHDStandard(result.thd_percent)) {
std::cout << "✅ Meets professional standard!\n";
}
}
Ejemplo 3: Recolección automática¶
#include "metric_collector.hpp"
// Función que retorna CPU usage
double getCPUUsage() {
// ... implementación
return current_cpu;
}
// Configurar collector
CollectorConfig config("cpu_collector",
CollectionStrategy::PERIODIC,
std::chrono::milliseconds(100));
auto collector = CollectorManager::getInstance().createCollector(
config, cpu_metric
);
// Agregar source
collector->addSource(
std::make_shared<FunctionSource>("cpu_sensor", getCPUUsage)
);
// Collector ya está corriendo automáticamente
Ejemplo 4: Detección de regresiones¶
#include "regression_detector.hpp"
RegressionDetector detector(0.95); // 95% confidence
auto result = detector.detect_regression(
"cpu_usage",
new_cpu_value,
context
);
if (result.is_regression) {
std::cout << "🚨 REGRESSION DETECTED!\n";
std::cout << "Severity: " << result.severity << "\n";
std::cout << "Expected: " << result.expected_range.first
<< " - " << result.expected_range.second << "\n";
std::cout << "Actual: " << result.actual_value << "\n";
}
🔗 Integración con otros subsistemas¶
Dependencies (Upstream)¶
15_REFERENCE_IMPLEMENTATIONS → Baselines para comparar
16_PERFORMANCE_VARIANTS → Variantes para benchmarking
17_VERSION_CONTROL → Tracking de cambios
13_ENGINES_L3 → Métricas end-to-end
Provides to (Downstream)¶
→ 19_DIAGNOSTIC_SUITE (usa métricas para diagnosticar)
→ 23_QUALITY_VALIDATION (validación basada en métricas)
→ 30_TESTING_FRAMEWORK (métricas de tests)
→ 31_OBSERVABILITY_SYSTEM (monitoring en producción)
📈 Roadmap¶
✅ Phase 1 - Métricas Fundamentales (CURRENT)¶
- Core metrics framework (Gauge, Counter, Histogram)
- Audio quality básicas (THD, SNR, Frequency Response)
- Performance metrics simples (CPU, Memory, Latency)
- Manual quality gates
- Regression detection simple
Timeline: 2 meses Deliverables: 10 métricas core funcionando
🚧 Phase 2 - Automatización y Análisis (NEXT)¶
- Suite completa de audio metrics
- Performance profiling avanzado
- Automated quality gates en CI/CD
- Real-time dashboards interactivos
- Statistical regression detection
- A/B testing framework
- Competitive analysis básico
Timeline: 4-5 meses Deliverables: 50+ métricas automatizadas, 100% gates automatizados
🔮 Phase 3 - Intelligence y Optimización (FUTURE)¶
- ML-powered anomaly detection
- Predictive quality metrics
- Automated root cause analysis
- Comprehensive competitive intelligence
- User perception modeling
Timeline: 6+ meses
🧪 Testing¶
# Build tests
cd 05_18_QUALITY_METRICS
mkdir build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
cmake --build .
# Run core framework tests
./05_18_00_metrics_framework/tests/test_metrics_core
# Run audio quality tests
./05_18_01_audio_quality_metrics/tests/test_thd_analyzer
# Run performance benchmarks
./05_18_02_performance_benchmarks/benchmarks/dsp_kernels_benchmark
# Run examples
./05_18_00_metrics_framework/examples/basic_metrics_example
📚 Documentation¶
- ARCHITECTURE.md: System architecture details
- METRICS_CATALOG.md: Complete catalog of all metrics
- INTEGRATION_GUIDE.md: How to integrate with your code
- STANDARDS.md: Reference standards (AES17, ITU-R, EBU)
🤝 Contributing¶
Cuando agregues nuevas métricas:
- Define metadata clara (nombre, tipo, unidad, dirección)
- Documenta el propósito y cómo interpretar los valores
- Especifica thresholds (warning/error/critical)
- Incluye tests con valores conocidos
- Actualiza METRICS_CATALOG.md
📝 License¶
Copyright © 2025 AudioLab. All rights reserved.
🎯 Success Metrics¶
| Metric | Target | Current | Status |
|---|---|---|---|
| Métricas implementadas | 50+ | 10 | 🟡 In Progress |
| Cobertura de tests | >90% | 85% | 🟡 In Progress |
| Quality gates automatizados | 100% | 0% | 🔴 Pending |
| Regression detection accuracy | >95% | N/A | 🔴 Pending |
| CI/CD integration | Complete | Partial | 🟡 In Progress |
📞 Support¶
Para preguntas o issues:
- Revisa la documentación en docs/
- Consulta los ejemplos en examples/
- Verifica los tests en tests/
Remember: "You can't improve what you don't measure" - Peter Drucker
El subsistema de Quality Metrics transforma AudioLab de "parece que funciona" a "cumple estándares profesionales AES17 con THD < 0.001%".
🎯 Objetivo: Calidad objetiva, medible y reproducible.