05_24_00: Semantic Analyzer - Multi-dimensional DSP Module Analysis¶
Executive Summary¶
The Semantic Analyzer is the foundational intelligence layer that understands DSP modules at a deep semantic level. It provides multi-dimensional analysis of module characteristics, compatibility scoring, relationship detection, and user intent interpretation.
Status: ✅ Core implementation complete Version: 1.0.0 Performance: <10ms per query (target met)
What Does It Do?¶
The Semantic Analyzer enables intelligent module composition by:
- Module Understanding - Knows what each module does, its sonic character, and processing characteristics
- Compatibility Analysis - Scores how well modules work together (0.0-1.0)
- Relationship Detection - Identifies complements, conflicts, and synergies
- Intent Interpretation - Translates user goals ("I want warmth") into module suggestions
- Musical Context - Understands genre and instrument-specific patterns
Architecture¶
semantic_analyzer.h/cpp # Main API
semantic_model.yaml # Knowledge base (ontology + relationships)
knowledge_graph.h # Graph representation (planned)
compatibility_scorer.cpp # Scoring algorithms (integrated)
intent_analyzer.h # NLP intent parsing (integrated)
Key Data Structures¶
ModuleDescriptor: Complete description of a module - Category (dynamics, spectral, temporal, distortion, modulation, utility) - Sonic attributes (6D vector: warmth, brightness, density, aggression, width, punchiness) - Processing characteristics (linearity, time-invariance, latency, CPU intensity) - Typical chain position (early, mid, late)
CompatibilityResult: Analysis of module pairing - Score [0.0, 1.0] - Interpretation (excellent, good, neutral, caution, avoid) - Recommended order - Reasons and warnings - Confidence level
UserIntent: Interpreted user goal - Intent type - Target sonic attribute - Direction (increase/decrease) - Suggested modules - Typical settings
Usage Examples¶
Example 1: Check Compatibility¶
#include "semantic_analyzer.h"
SemanticAnalyzer analyzer;
analyzer.initialize("semantic_model.yaml");
// Check if compressor and EQ work well together
auto result = analyzer.check_compatibility("compressor", "eq");
std::cout << "Score: " << result.score << "\n";
// Output: Score: 0.85 (excellent)
std::cout << "Order: " << result.recommended_order << "\n";
// Output: Order: eq_first
Example 2: Analyze Processing Chain¶
std::vector<std::string> chain = {
"gate", "eq", "compressor", "reverb"
};
auto results = analyzer.check_chain_compatibility(chain);
for (size_t i = 0; i < results.size(); ++i) {
std::cout << chain[i] << " → " << chain[i+1]
<< ": " << results[i].score << "\n";
}
// Output:
// gate → eq: 0.80 (good)
// eq → compressor: 0.85 (excellent)
// compressor → reverb: 0.75 (good)
Example 3: Interpret User Intent¶
auto intent = analyzer.interpret_intent("I want more warmth");
std::cout << "Target: " << intent.target_attribute << "\n";
// Output: Target: warmth
std::cout << "Suggested modules:\n";
for (const auto& module : intent.suggested_modules) {
std::cout << " - " << module << "\n";
}
// Output:
// - tape_saturation
// - tube_compressor
// - vintage_eq
Example 4: Find Relationships¶
// Find modules that work well with compressor
auto complements = analyzer.find_complements("compressor");
// Returns: ["eq", "saturation", ...]
// Find modules that conflict with compressor
auto conflicts = analyzer.find_conflicts("compressor");
// Returns: ["expander", ...]
// Get detailed relationship
auto rel = analyzer.find_relationship("compressor", "eq");
std::cout << "Reason: " << rel->reason << "\n";
// Output: Reason: EQ shapes tone before dynamics control
Example 5: Musical Context¶
// Genre-specific recommendations
auto rock_modules = analyzer.get_modules_for_genre("rock");
// Returns: ["guitar_amp", "drum_bus_glue", ...]
// Instrument-specific
auto vocal_modules = analyzer.get_modules_for_instrument("vocal");
// Returns: ["de_esser", "compressor", "eq", "reverb"]
// Use case templates
auto drum_chain = analyzer.get_typical_chain("drum_bus");
// Returns: ["eq", "compressor", "saturation", "limiter"]
Semantic Model¶
The knowledge base (semantic_model.yaml) defines:
Module Ontology¶
6 primary categories with subcategories:
dynamics:
- compressor, limiter, expander, gate, transient_shaper
spectral:
- equalizer, filter, exciter, enhancer, de_esser
temporal:
- delay, reverb, echo, chorus, flanger, phaser
distortion:
- saturation, overdrive, distortion, bitcrusher
modulation:
- tremolo, vibrato, auto_pan, ring_modulator
utility:
- gain, phase_inverter, width_control, tuner
Sonic Attributes (6D Space)¶
Each module has coordinates in 6-dimensional sonic space:
- Warmth [-1.0, 1.0]: Cold/analytical ↔ Warm/organic
- Brightness [-1.0, 1.0]: Dark/dull ↔ Bright/airy
- Density [0.0, 1.0]: Sparse/thin ↔ Dense/thick
- Aggression [0.0, 1.0]: Gentle/subtle ↔ Aggressive/obvious
- Width [0.0, 1.0]: Mono/centered ↔ Wide/spacious
- Punchiness [0.0, 1.0]: Smooth/rounded ↔ Punchy/defined
Relationships¶
Complements (work well together):
- pair: ["eq", "compressor"]
reason: "EQ shapes tone before dynamics control"
order: "eq_first"
confidence: 0.9
Conflicts (problematic):
- pair: ["gate", "reverb"]
reason: "Gate cuts reverb tail prematurely"
severity: "high"
mitigation: "Use gate before reverb"
confidence: 0.9
Synergies (1+1=3):
- combination: ["tape_saturation", "tube_compressor", "vintage_eq"]
emergent_property: "Cohesive analog warmth"
confidence: 0.85
Compatibility Scoring Algorithm¶
The compatibility score is computed using weighted factors:
Score = Σ (factor_i × weight_i) / Σ |weight_i|
Weights:
category_compatibility: 0.25 // Same category bonus
attribute_complementarity: 0.30 // Attributes complement
known_conflicts: -0.40 // Problematic pair (negative!)
known_synergies: 0.35 // Known good pairing
processing_order: 0.20 // Logical chain position
Interpretation Thresholds: - Excellent [0.85, 1.0]: Highly recommended - Good [0.70, 0.85): Good combination - Neutral [0.50, 0.70): No strong opinion - Caution [0.30, 0.50): Use with care - Avoid [0.0, 0.30): Not recommended
Performance¶
Targets: - Query time: <10ms per analysis ✅ - Initialization: <100ms ✅ - Memory footprint: <10MB ✅
Actual (measured):
API Reference¶
Core Functions¶
// Initialization
bool initialize(const std::string& model_path);
bool is_initialized() const;
// Module queries
std::optional<ModuleDescriptor> get_module_descriptor(const std::string& name);
std::vector<std::string> get_modules_by_category(ModuleCategory category);
// Compatibility analysis
CompatibilityResult check_compatibility(const std::string& a, const std::string& b);
std::vector<CompatibilityResult> check_chain_compatibility(const std::vector<std::string>& chain);
std::vector<std::vector<float>> get_compatibility_matrix(const std::vector<std::string>& modules);
// Relationships
std::optional<ModuleRelationship> find_relationship(const std::string& a, const std::string& b);
std::vector<std::string> find_complements(const std::string& module);
std::vector<std::string> find_conflicts(const std::string& module);
std::vector<ModuleRelationship> find_synergies(const std::vector<std::string>& modules);
// Intent interpretation
UserIntent interpret_intent(const std::string& intent_string);
std::vector<std::string> suggest_modules_for_attribute(const std::string& attr, const std::string& dir);
// Musical context
std::vector<std::string> get_modules_for_genre(const std::string& genre);
std::vector<std::string> get_modules_for_instrument(const std::string& instrument);
std::vector<std::string> get_typical_chain(const std::string& use_case);
// Metrics
size_t get_module_count() const;
size_t get_relationship_count() const;
std::map<std::string, double> get_performance_metrics() const;
Dependencies¶
Required: - C++17 or later - yaml-cpp library for YAML parsing
Optional: - Catch2 for unit tests - Benchmark library for performance testing
Building¶
# Create build directory
mkdir build && cd build
# Configure with CMake
cmake .. -DCMAKE_BUILD_TYPE=Release
# Build
cmake --build . --config Release
# Run examples
./basic_usage
# Run tests
ctest
Testing¶
Unit tests cover: - ✅ Module database loading - ✅ Compatibility scoring algorithm - ✅ Relationship queries - ✅ Intent interpretation - ✅ Musical context queries - ✅ Performance benchmarks
Coverage target: >90% ✅
Future Enhancements¶
Planned improvements:
- Machine Learning Integration
- Learn from user feedback
- Discover new patterns
-
Adapt to user preferences
-
Advanced Intent Analysis
- NLP with transformers
- Multi-intent queries
-
Contextual understanding
-
Dynamic Attribute Calculation
- Analyze actual audio
- Measure sonic attributes
-
Update model from real data
-
Visualization
- 6D attribute space visualization
- Compatibility heatmaps
- Relationship graphs
Known Limitations¶
- Static Model: Currently requires manual updates to semantic_model.yaml
- Limited Intents: Only predefined intent patterns recognized
- No Audio Analysis: Attributes are theoretical, not measured from audio
- Binary Relationships: Only pairwise relationships, no N-way interactions
Contributing¶
When extending the semantic model:
- Add new modules to appropriate category in
semantic_model.yaml - Define sonic attributes (use reference measurements)
- Add relationships based on audio engineering theory
- Update tests to cover new modules
- Benchmark performance impact
References¶
Audio Engineering Theory: - Mixing Secrets for the Small Studio (Mike Senior) - The Art of Mixing (David Gibson) - Audio Processing and DSP (Udo Zölzer)
Semantic Web: - Ontology Design Patterns - Knowledge Graph Construction - Semantic Similarity Metrics
Part of AudioLab Composition Intelligence (05_24_COMPOSITION_INTELLIGENCE) Last updated: 2025-01-15 | Version: 1.0.0