Skip to content

TAREA 00: ML Framework - Core Machine Learning Infrastructure

Status: ๐Ÿ”ด PLANNING - Architecture defined, ready for implementation


๐ŸŽฏ Purpose

Provides the foundational infrastructure for all machine learning operations in AudioLab, including model loading, inference execution, optimization, and deployment across multiple platforms and hardware accelerators.


๐Ÿ—๏ธ Architecture

Core Components

05_26_00_ml_framework/
โ”œโ”€โ”€ include/
โ”‚   โ”œโ”€โ”€ MLFramework.h              # Main framework interface
โ”‚   โ”œโ”€โ”€ ModelLoader.h              # Model loading/deserialization
โ”‚   โ”œโ”€โ”€ InferenceEngine.h          # Inference execution abstraction
โ”‚   โ”œโ”€โ”€ TensorOps.h                # Tensor operations
โ”‚   โ”œโ”€โ”€ Quantization.h             # Model quantization (INT8, FP16)
โ”‚   โ”œโ”€โ”€ ModelOptimizer.h           # Model optimization pipeline
โ”‚   โ””โ”€โ”€ HardwareAccelerator.h      # CPU/GPU/NPU abstraction
โ”œโ”€โ”€ src/
โ”‚   โ”œโ”€โ”€ ModelLoader.cpp
โ”‚   โ”œโ”€โ”€ ONNXInferenceEngine.cpp    # ONNX Runtime backend
โ”‚   โ”œโ”€โ”€ TFLiteInferenceEngine.cpp  # TensorFlow Lite backend
โ”‚   โ”œโ”€โ”€ TorchInferenceEngine.cpp   # LibTorch backend
โ”‚   โ”œโ”€โ”€ TensorOps.cpp
โ”‚   โ””โ”€โ”€ Quantization.cpp
โ”œโ”€โ”€ tests/
โ”‚   โ”œโ”€โ”€ test_model_loader.cpp
โ”‚   โ”œโ”€โ”€ test_inference_engine.cpp
โ”‚   โ”œโ”€โ”€ test_quantization.cpp
โ”‚   โ””โ”€โ”€ benchmark_inference.cpp
โ”œโ”€โ”€ examples/
โ”‚   โ”œโ”€โ”€ simple_inference.cpp       # Basic model loading and inference
โ”‚   โ”œโ”€โ”€ multi_backend_comparison.cpp
โ”‚   โ””โ”€โ”€ real_time_inference.cpp
โ””โ”€โ”€ models/
    โ””โ”€โ”€ test_models/               # Sample models for testing

๐Ÿ”‘ Key Features

1. Multi-Backend Support

  • ONNX Runtime: Cross-platform, production-ready
  • TensorFlow Lite: Mobile and embedded deployment
  • LibTorch: Full PyTorch C++ API support
  • OpenVINO: Intel CPU/GPU optimization (optional)

2. Hardware Acceleration

  • CPU: Optimized BLAS operations, SIMD vectorization
  • GPU: CUDA, DirectML, Metal support
  • NPU: Neural Processing Unit support (Apple Neural Engine, Intel VPU)

3. Model Formats

  • ONNX (.onnx)
  • TensorFlow Lite (.tflite)
  • TorchScript (.pt)
  • CoreML (.mlmodel) - Apple platforms
  • Custom binary format for optimized models

4. Optimization Pipeline

  • Quantization: FP32 โ†’ FP16 โ†’ INT8
  • Pruning: Remove redundant weights
  • Fusion: Operator fusion for faster inference
  • Graph Optimization: Constant folding, dead code elimination

๐Ÿ“‹ Implementation Plan

Phase 1: Core Infrastructure (Week 1-2)

1.1 Model Loader

class IModelLoader {
public:
    virtual ~IModelLoader() = default;
    virtual bool loadModel(const std::string& path) = 0;
    virtual bool loadFromMemory(const void* data, size_t size) = 0;
    virtual ModelMetadata getMetadata() const = 0;
};

class ONNXModelLoader : public IModelLoader {
    // ONNX-specific loading
};

class TFLiteModelLoader : public IModelLoader {
    // TFLite-specific loading
};

1.2 Inference Engine Interface

class IInferenceEngine {
public:
    virtual ~IInferenceEngine() = default;

    // Model lifecycle
    virtual bool initialize(const ModelConfig& config) = 0;
    virtual bool loadModel(const std::string& path) = 0;
    virtual void shutdown() = 0;

    // Inference
    virtual bool run(const TensorMap& inputs, TensorMap& outputs) = 0;
    virtual bool runAsync(const TensorMap& inputs,
                          std::function<void(TensorMap&)> callback) = 0;

    // Metadata
    virtual std::vector<TensorInfo> getInputInfo() const = 0;
    virtual std::vector<TensorInfo> getOutputInfo() const = 0;
    virtual PerformanceStats getStats() const = 0;
};

1.3 Tensor Abstraction

class Tensor {
public:
    Tensor(const std::vector<int64_t>& shape, DataType dtype);

    // Data access
    template<typename T>
    T* data();

    template<typename T>
    const T* data() const;

    // Shape operations
    std::vector<int64_t> shape() const;
    int64_t size() const;
    int64_t bytes() const;

    // Type conversion
    Tensor cast(DataType target_dtype) const;
    Tensor quantize(QuantizationType type) const;
};

using TensorMap = std::unordered_map<std::string, Tensor>;

Phase 2: ONNX Backend (Week 3)

2.1 ONNX Runtime Integration

class ONNXInferenceEngine : public IInferenceEngine {
private:
    Ort::Env env_;
    Ort::Session session_;
    Ort::SessionOptions session_options_;

public:
    bool initialize(const ModelConfig& config) override;
    bool loadModel(const std::string& path) override;
    bool run(const TensorMap& inputs, TensorMap& outputs) override;

private:
    void setupExecutionProvider(ExecutionProvider provider);
    void optimizeSession();
};

2.2 Execution Providers

  • CPU: Default, optimized for multi-core
  • CUDA: NVIDIA GPU acceleration
  • DirectML: Windows GPU (AMD, Intel, NVIDIA)
  • CoreML: Apple Neural Engine

Phase 3: TensorFlow Lite Backend (Week 4)

3.1 TFLite Integration

class TFLiteInferenceEngine : public IInferenceEngine {
private:
    std::unique_ptr<tflite::FlatBufferModel> model_;
    std::unique_ptr<tflite::Interpreter> interpreter_;

public:
    bool initialize(const ModelConfig& config) override;
    bool loadModel(const std::string& path) override;
    bool run(const TensorMap& inputs, TensorMap& outputs) override;

private:
    void setupDelegates();  // GPU, NNAPI, CoreML
    void allocateTensors();
};

Phase 4: LibTorch Backend (Week 5)

4.1 PyTorch C++ API

class TorchInferenceEngine : public IInferenceEngine {
private:
    torch::jit::script::Module module_;
    torch::Device device_;

public:
    bool initialize(const ModelConfig& config) override;
    bool loadModel(const std::string& path) override;
    bool run(const TensorMap& inputs, TensorMap& outputs) override;
};

Phase 5: Quantization & Optimization (Week 6)

5.1 Quantization

class ModelQuantizer {
public:
    // Post-training quantization
    bool quantizeModel(const std::string& input_model,
                      const std::string& output_model,
                      QuantizationType type);

    // Calibration-based quantization
    bool quantizeWithCalibration(const std::string& input_model,
                                const CalibrationDataset& dataset,
                                const std::string& output_model);
};

enum class QuantizationType {
    FP16,           // Half precision
    INT8_SYMMETRIC, // Symmetric quantization
    INT8_ASYMMETRIC,// Asymmetric quantization
    DYNAMIC         // Dynamic quantization (weights only)
};

5.2 Model Optimization

class ModelOptimizer {
public:
    // Operator fusion
    bool fuseOperators(const std::string& input_model,
                      const std::string& output_model);

    // Constant folding
    bool foldConstants(const std::string& model_path);

    // Dead code elimination
    bool eliminateDeadCode(const std::string& model_path);
};

๐Ÿงช Testing Strategy

Unit Tests

  • Model loading from file and memory
  • Tensor operations (shape, dtype conversion)
  • Inference correctness (compare with reference outputs)
  • Quantization accuracy

Integration Tests

  • Multi-backend comparison (same model, different backends)
  • Real-time inference benchmarks
  • Memory usage profiling

Performance Tests

  • Latency measurements (p50, p95, p99)
  • Throughput testing (models/sec)
  • CPU/GPU utilization

๐Ÿ“Š Performance Targets

Latency

  • Small models (< 1MB): < 1ms
  • Medium models (1-10MB): < 5ms
  • Large models (> 10MB): < 20ms

Throughput

  • CPU: > 100 inferences/sec (small model)
  • GPU: > 500 inferences/sec (small model)

Memory

  • Model footprint: < 100MB per loaded model
  • Runtime overhead: < 50MB

๐Ÿ”ง Configuration

Model Configuration

struct ModelConfig {
    std::string model_path;
    ModelFormat format;          // ONNX, TFLite, TorchScript
    ExecutionProvider provider;  // CPU, CUDA, DirectML, CoreML
    int num_threads = 4;
    bool enable_profiling = false;
    QuantizationType quantization = QuantizationType::NONE;
};

Inference Configuration

struct InferenceConfig {
    bool enable_batching = false;
    int max_batch_size = 1;
    float timeout_ms = 100.0f;
    bool async_mode = false;
};

๐Ÿ“– Usage Examples

Example 1: Simple Inference

#include "MLFramework.h"

int main() {
    // Create inference engine
    auto engine = createInferenceEngine(ModelFormat::ONNX);

    // Configure
    ModelConfig config;
    config.model_path = "models/audio_classifier.onnx";
    config.provider = ExecutionProvider::CPU;
    config.num_threads = 4;

    // Initialize
    if (!engine->initialize(config)) {
        return -1;
    }

    // Load model
    if (!engine->loadModel(config.model_path)) {
        return -1;
    }

    // Prepare input
    TensorMap inputs;
    inputs["audio_input"] = Tensor({1, 1, 44100}, DataType::FLOAT32);
    // ... fill with audio data

    // Run inference
    TensorMap outputs;
    if (engine->run(inputs, outputs)) {
        auto predictions = outputs["predictions"].data<float>();
        // Process results
    }

    engine->shutdown();
    return 0;
}

Example 2: Quantized Model

// Quantize model
ModelQuantizer quantizer;
quantizer.quantizeModel(
    "models/audio_classifier_fp32.onnx",
    "models/audio_classifier_int8.onnx",
    QuantizationType::INT8_SYMMETRIC
);

// Load quantized model
ModelConfig config;
config.model_path = "models/audio_classifier_int8.onnx";
config.quantization = QuantizationType::INT8_SYMMETRIC;

auto engine = createInferenceEngine(ModelFormat::ONNX);
engine->initialize(config);

Example 3: GPU Acceleration

ModelConfig config;
config.model_path = "models/source_separation.onnx";
config.provider = ExecutionProvider::CUDA;  // Use NVIDIA GPU

auto engine = createInferenceEngine(ModelFormat::ONNX);
engine->initialize(config);

๐Ÿ”— Dependencies

External Libraries

# ONNX Runtime
find_package(onnxruntime REQUIRED)

# TensorFlow Lite
find_package(TensorFlowLite REQUIRED)

# LibTorch (PyTorch C++)
find_package(Torch REQUIRED)

# Optional: OpenVINO
find_package(OpenVINO)

Build Configuration

add_library(ml_framework
    src/ModelLoader.cpp
    src/ONNXInferenceEngine.cpp
    src/TFLiteInferenceEngine.cpp
    src/TorchInferenceEngine.cpp
    src/TensorOps.cpp
    src/Quantization.cpp
)

target_link_libraries(ml_framework
    PUBLIC
        onnxruntime::onnxruntime
        tensorflow::tensorflowlite
        torch
)

๐Ÿ“š Research References

  1. ONNX Runtime - Microsoft, cross-platform ML inference
  2. TensorFlow Lite - Google, mobile/embedded ML
  3. LibTorch - PyTorch C++ API
  4. Quantization Aware Training (Jacob et al., 2018)
  5. Neural Network Distillation (Hinton et al., 2015)

๐Ÿš€ Roadmap

Week 1-2: Foundation

  • Architecture design
  • Core interfaces (IModelLoader, IInferenceEngine)
  • Tensor abstraction
  • Basic unit tests

Week 3: ONNX Backend

  • ONNX Runtime integration
  • CPU execution provider
  • GPU execution provider (CUDA/DirectML)
  • Performance benchmarks

Week 4: TFLite Backend

  • TensorFlow Lite integration
  • Mobile GPU delegate
  • CoreML delegate (Apple)
  • Benchmarks vs ONNX

Week 5: LibTorch Backend

  • PyTorch C++ API integration
  • TorchScript loading
  • GPU support
  • Comparison with other backends

Week 6: Optimization

  • Quantization pipeline (FP16, INT8)
  • Model pruning
  • Operator fusion
  • Final benchmarks

Last Updated: 2025-10-15 Status: ๐Ÿ”ด Ready for implementation Priority: ๐Ÿ”ฅ Critical - Foundation for all ML features