TAREA 00: ML Framework - Core Machine Learning Infrastructure¶
Status: ๐ด PLANNING - Architecture defined, ready for implementation
๐ฏ Purpose¶
Provides the foundational infrastructure for all machine learning operations in AudioLab, including model loading, inference execution, optimization, and deployment across multiple platforms and hardware accelerators.
๐๏ธ Architecture¶
Core Components¶
05_26_00_ml_framework/
โโโ include/
โ โโโ MLFramework.h # Main framework interface
โ โโโ ModelLoader.h # Model loading/deserialization
โ โโโ InferenceEngine.h # Inference execution abstraction
โ โโโ TensorOps.h # Tensor operations
โ โโโ Quantization.h # Model quantization (INT8, FP16)
โ โโโ ModelOptimizer.h # Model optimization pipeline
โ โโโ HardwareAccelerator.h # CPU/GPU/NPU abstraction
โโโ src/
โ โโโ ModelLoader.cpp
โ โโโ ONNXInferenceEngine.cpp # ONNX Runtime backend
โ โโโ TFLiteInferenceEngine.cpp # TensorFlow Lite backend
โ โโโ TorchInferenceEngine.cpp # LibTorch backend
โ โโโ TensorOps.cpp
โ โโโ Quantization.cpp
โโโ tests/
โ โโโ test_model_loader.cpp
โ โโโ test_inference_engine.cpp
โ โโโ test_quantization.cpp
โ โโโ benchmark_inference.cpp
โโโ examples/
โ โโโ simple_inference.cpp # Basic model loading and inference
โ โโโ multi_backend_comparison.cpp
โ โโโ real_time_inference.cpp
โโโ models/
โโโ test_models/ # Sample models for testing
๐ Key Features¶
1. Multi-Backend Support¶
- ONNX Runtime: Cross-platform, production-ready
- TensorFlow Lite: Mobile and embedded deployment
- LibTorch: Full PyTorch C++ API support
- OpenVINO: Intel CPU/GPU optimization (optional)
2. Hardware Acceleration¶
- CPU: Optimized BLAS operations, SIMD vectorization
- GPU: CUDA, DirectML, Metal support
- NPU: Neural Processing Unit support (Apple Neural Engine, Intel VPU)
3. Model Formats¶
- ONNX (.onnx)
- TensorFlow Lite (.tflite)
- TorchScript (.pt)
- CoreML (.mlmodel) - Apple platforms
- Custom binary format for optimized models
4. Optimization Pipeline¶
- Quantization: FP32 โ FP16 โ INT8
- Pruning: Remove redundant weights
- Fusion: Operator fusion for faster inference
- Graph Optimization: Constant folding, dead code elimination
๐ Implementation Plan¶
Phase 1: Core Infrastructure (Week 1-2)¶
1.1 Model Loader¶
class IModelLoader {
public:
virtual ~IModelLoader() = default;
virtual bool loadModel(const std::string& path) = 0;
virtual bool loadFromMemory(const void* data, size_t size) = 0;
virtual ModelMetadata getMetadata() const = 0;
};
class ONNXModelLoader : public IModelLoader {
// ONNX-specific loading
};
class TFLiteModelLoader : public IModelLoader {
// TFLite-specific loading
};
1.2 Inference Engine Interface¶
class IInferenceEngine {
public:
virtual ~IInferenceEngine() = default;
// Model lifecycle
virtual bool initialize(const ModelConfig& config) = 0;
virtual bool loadModel(const std::string& path) = 0;
virtual void shutdown() = 0;
// Inference
virtual bool run(const TensorMap& inputs, TensorMap& outputs) = 0;
virtual bool runAsync(const TensorMap& inputs,
std::function<void(TensorMap&)> callback) = 0;
// Metadata
virtual std::vector<TensorInfo> getInputInfo() const = 0;
virtual std::vector<TensorInfo> getOutputInfo() const = 0;
virtual PerformanceStats getStats() const = 0;
};
1.3 Tensor Abstraction¶
class Tensor {
public:
Tensor(const std::vector<int64_t>& shape, DataType dtype);
// Data access
template<typename T>
T* data();
template<typename T>
const T* data() const;
// Shape operations
std::vector<int64_t> shape() const;
int64_t size() const;
int64_t bytes() const;
// Type conversion
Tensor cast(DataType target_dtype) const;
Tensor quantize(QuantizationType type) const;
};
using TensorMap = std::unordered_map<std::string, Tensor>;
Phase 2: ONNX Backend (Week 3)¶
2.1 ONNX Runtime Integration¶
class ONNXInferenceEngine : public IInferenceEngine {
private:
Ort::Env env_;
Ort::Session session_;
Ort::SessionOptions session_options_;
public:
bool initialize(const ModelConfig& config) override;
bool loadModel(const std::string& path) override;
bool run(const TensorMap& inputs, TensorMap& outputs) override;
private:
void setupExecutionProvider(ExecutionProvider provider);
void optimizeSession();
};
2.2 Execution Providers¶
- CPU: Default, optimized for multi-core
- CUDA: NVIDIA GPU acceleration
- DirectML: Windows GPU (AMD, Intel, NVIDIA)
- CoreML: Apple Neural Engine
Phase 3: TensorFlow Lite Backend (Week 4)¶
3.1 TFLite Integration¶
class TFLiteInferenceEngine : public IInferenceEngine {
private:
std::unique_ptr<tflite::FlatBufferModel> model_;
std::unique_ptr<tflite::Interpreter> interpreter_;
public:
bool initialize(const ModelConfig& config) override;
bool loadModel(const std::string& path) override;
bool run(const TensorMap& inputs, TensorMap& outputs) override;
private:
void setupDelegates(); // GPU, NNAPI, CoreML
void allocateTensors();
};
Phase 4: LibTorch Backend (Week 5)¶
4.1 PyTorch C++ API¶
class TorchInferenceEngine : public IInferenceEngine {
private:
torch::jit::script::Module module_;
torch::Device device_;
public:
bool initialize(const ModelConfig& config) override;
bool loadModel(const std::string& path) override;
bool run(const TensorMap& inputs, TensorMap& outputs) override;
};
Phase 5: Quantization & Optimization (Week 6)¶
5.1 Quantization¶
class ModelQuantizer {
public:
// Post-training quantization
bool quantizeModel(const std::string& input_model,
const std::string& output_model,
QuantizationType type);
// Calibration-based quantization
bool quantizeWithCalibration(const std::string& input_model,
const CalibrationDataset& dataset,
const std::string& output_model);
};
enum class QuantizationType {
FP16, // Half precision
INT8_SYMMETRIC, // Symmetric quantization
INT8_ASYMMETRIC,// Asymmetric quantization
DYNAMIC // Dynamic quantization (weights only)
};
5.2 Model Optimization¶
class ModelOptimizer {
public:
// Operator fusion
bool fuseOperators(const std::string& input_model,
const std::string& output_model);
// Constant folding
bool foldConstants(const std::string& model_path);
// Dead code elimination
bool eliminateDeadCode(const std::string& model_path);
};
๐งช Testing Strategy¶
Unit Tests¶
- Model loading from file and memory
- Tensor operations (shape, dtype conversion)
- Inference correctness (compare with reference outputs)
- Quantization accuracy
Integration Tests¶
- Multi-backend comparison (same model, different backends)
- Real-time inference benchmarks
- Memory usage profiling
Performance Tests¶
- Latency measurements (p50, p95, p99)
- Throughput testing (models/sec)
- CPU/GPU utilization
๐ Performance Targets¶
Latency¶
- Small models (< 1MB): < 1ms
- Medium models (1-10MB): < 5ms
- Large models (> 10MB): < 20ms
Throughput¶
- CPU: > 100 inferences/sec (small model)
- GPU: > 500 inferences/sec (small model)
Memory¶
- Model footprint: < 100MB per loaded model
- Runtime overhead: < 50MB
๐ง Configuration¶
Model Configuration¶
struct ModelConfig {
std::string model_path;
ModelFormat format; // ONNX, TFLite, TorchScript
ExecutionProvider provider; // CPU, CUDA, DirectML, CoreML
int num_threads = 4;
bool enable_profiling = false;
QuantizationType quantization = QuantizationType::NONE;
};
Inference Configuration¶
struct InferenceConfig {
bool enable_batching = false;
int max_batch_size = 1;
float timeout_ms = 100.0f;
bool async_mode = false;
};
๐ Usage Examples¶
Example 1: Simple Inference¶
#include "MLFramework.h"
int main() {
// Create inference engine
auto engine = createInferenceEngine(ModelFormat::ONNX);
// Configure
ModelConfig config;
config.model_path = "models/audio_classifier.onnx";
config.provider = ExecutionProvider::CPU;
config.num_threads = 4;
// Initialize
if (!engine->initialize(config)) {
return -1;
}
// Load model
if (!engine->loadModel(config.model_path)) {
return -1;
}
// Prepare input
TensorMap inputs;
inputs["audio_input"] = Tensor({1, 1, 44100}, DataType::FLOAT32);
// ... fill with audio data
// Run inference
TensorMap outputs;
if (engine->run(inputs, outputs)) {
auto predictions = outputs["predictions"].data<float>();
// Process results
}
engine->shutdown();
return 0;
}
Example 2: Quantized Model¶
// Quantize model
ModelQuantizer quantizer;
quantizer.quantizeModel(
"models/audio_classifier_fp32.onnx",
"models/audio_classifier_int8.onnx",
QuantizationType::INT8_SYMMETRIC
);
// Load quantized model
ModelConfig config;
config.model_path = "models/audio_classifier_int8.onnx";
config.quantization = QuantizationType::INT8_SYMMETRIC;
auto engine = createInferenceEngine(ModelFormat::ONNX);
engine->initialize(config);
Example 3: GPU Acceleration¶
ModelConfig config;
config.model_path = "models/source_separation.onnx";
config.provider = ExecutionProvider::CUDA; // Use NVIDIA GPU
auto engine = createInferenceEngine(ModelFormat::ONNX);
engine->initialize(config);
๐ Dependencies¶
External Libraries¶
# ONNX Runtime
find_package(onnxruntime REQUIRED)
# TensorFlow Lite
find_package(TensorFlowLite REQUIRED)
# LibTorch (PyTorch C++)
find_package(Torch REQUIRED)
# Optional: OpenVINO
find_package(OpenVINO)
Build Configuration¶
add_library(ml_framework
src/ModelLoader.cpp
src/ONNXInferenceEngine.cpp
src/TFLiteInferenceEngine.cpp
src/TorchInferenceEngine.cpp
src/TensorOps.cpp
src/Quantization.cpp
)
target_link_libraries(ml_framework
PUBLIC
onnxruntime::onnxruntime
tensorflow::tensorflowlite
torch
)
๐ Research References¶
- ONNX Runtime - Microsoft, cross-platform ML inference
- TensorFlow Lite - Google, mobile/embedded ML
- LibTorch - PyTorch C++ API
- Quantization Aware Training (Jacob et al., 2018)
- Neural Network Distillation (Hinton et al., 2015)
๐ Roadmap¶
Week 1-2: Foundation¶
- Architecture design
- Core interfaces (IModelLoader, IInferenceEngine)
- Tensor abstraction
- Basic unit tests
Week 3: ONNX Backend¶
- ONNX Runtime integration
- CPU execution provider
- GPU execution provider (CUDA/DirectML)
- Performance benchmarks
Week 4: TFLite Backend¶
- TensorFlow Lite integration
- Mobile GPU delegate
- CoreML delegate (Apple)
- Benchmarks vs ONNX
Week 5: LibTorch Backend¶
- PyTorch C++ API integration
- TorchScript loading
- GPU support
- Comparison with other backends
Week 6: Optimization¶
- Quantization pipeline (FP16, INT8)
- Model pruning
- Operator fusion
- Final benchmarks
Last Updated: 2025-10-15 Status: ๐ด Ready for implementation Priority: ๐ฅ Critical - Foundation for all ML features