TAREA 00: ML Framework - Implementation Status¶
Last Updated: 2025-10-15 Status: ๐ก IN PROGRESS - Core interfaces implemented, backends pending
๐ Progress Summary¶
Overall Progress: 40%¶
| Component | Status | Progress | Notes |
|---|---|---|---|
| Core Types & Enums | โ Complete | 100% | MLTypes.h |
| Tensor Abstraction | โ Complete | 100% | Tensor.h, full implementation |
| Model Loader Interface | โ Complete | 100% | IModelLoader.h |
| Inference Engine Interface | โ Complete | 100% | IInferenceEngine.h |
| Framework Utilities | โ Complete | 100% | MLFramework.h/cpp |
| ONNX Backend | ๐ด Not Started | 0% | Requires ONNX Runtime |
| TFLite Backend | ๐ด Not Started | 0% | Requires TensorFlow Lite |
| LibTorch Backend | ๐ด Not Started | 0% | Requires LibTorch |
| Unit Tests | โ Complete | 100% | test_tensor.cpp, test_ml_types.cpp |
| Examples | โ Complete | 100% | basic_usage.cpp |
| CMake Build | โ Complete | 100% | CMakeLists.txt |
โ Completed Components¶
1. MLTypes.h (100%)¶
Purpose: Core type definitions and enumerations
Features Implemented: - โ DataType enumeration (FLOAT32, FLOAT16, INT8, etc.) - โ ModelFormat enumeration (ONNX, TFLITE, TORCHSCRIPT, etc.) - โ ExecutionProvider enumeration (CPU, CUDA, DirectML, etc.) - โ QuantizationType enumeration - โ MLError enumeration - โ TensorInfo struct - โ ModelConfig struct - โ ModelMetadata struct - โ PerformanceStats struct - โ ProcessingContext struct - โ Helper functions (getDataTypeSize, getDataTypeName, etc.)
Lines of Code: ~350 LOC
2. Tensor.h (100%)¶
Purpose: Multi-dimensional array abstraction for ML data
Features Implemented: - โ Construction (empty, with shape, from existing data) - โ Copy and move semantics - โ Data access (typed and raw pointers) - โ Shape operations (reshape, dim, ndim, size, bytes) - โ Type conversion (cast) - โ Fill operations (fill, zero) - โ Clone operation - โ TensorInfo extraction - โ Memory management (owning and non-owning)
Lines of Code: ~250 LOC
3. IModelLoader.h (100%)¶
Purpose: Abstract interface for loading ML models
Features Defined: - โ loadModel(path) - Load from file - โ loadFromMemory(data, size) - Load from memory - โ unload() - Unload model - โ getMetadata() - Model information - โ getInputInfo() / getOutputInfo() - Tensor information - โ isLoaded() - Status check - โ getLastError() - Error handling
Lines of Code: ~45 LOC
4. IInferenceEngine.h (100%)¶
Purpose: Abstract interface for ML inference execution
Features Defined: - โ initialize(config) - Initialize engine - โ loadModel(path) - Load model - โ run(inputs, outputs) - Synchronous inference - โ runAsync(inputs, callback) - Asynchronous inference - โ getInputInfo() / getOutputInfo() - Tensor information - โ setNumThreads() - Threading configuration - โ setTimeout() - Timeout configuration - โ getStats() - Performance monitoring - โ Error handling
Lines of Code: ~120 LOC
5. MLFramework.h/cpp (100%)¶
Purpose: Main header and utility implementations
Features Implemented: - โ Version information - โ Backend detection (getBackendInfo) - โ Model format detection (detectModelFormat) - โ Recommended provider selection - โ Tensor validation utilities - โ Audio tensor creation/extraction - โ Factory functions (stub implementations)
Lines of Code: ~280 LOC (header + implementation)
6. Unit Tests (100%)¶
Files: test_tensor.cpp, test_ml_types.cpp
Test Coverage: - โ Tensor construction (empty, shaped, from data) - โ Tensor data access (read/write) - โ Tensor copy/move semantics - โ Tensor reshape operations - โ Tensor fill/zero operations - โ Audio tensor creation/extraction - โ DataType utilities - โ ModelFormat, ExecutionProvider names - โ TensorInfo size calculations - โ ModelConfig defaults - โ PerformanceStats reset
Lines of Code: ~350 LOC
Test Framework: Catch2 v3
7. Examples (100%)¶
File: basic_usage.cpp
Demonstrates: - โ Version information - โ Backend detection - โ Tensor creation and operations - โ Audio tensor handling - โ Model format detection - โ Configuration setup
Lines of Code: ~180 LOC
8. Build System (100%)¶
File: CMakeLists.txt
Features: - โ ml_framework library target - โ Optional backend integration (ONNX, TFLite, Torch) - โ Test integration (Catch2) - โ Example builds - โ Installation targets - โ Configuration summary
Lines of Code: ~150 LOC
๐ด Pending Components¶
1. ONNX Runtime Backend (0%)¶
Priority: ๐ฅ CRITICAL
To Implement: - [ ] ONNXModelLoader class - [ ] ONNXInferenceEngine class - [ ] Execution provider setup (CPU, CUDA, DirectML) - [ ] Session configuration - [ ] Input/output tensor mapping - [ ] Error handling - [ ] Performance profiling integration
Estimated Lines: ~500 LOC
Dependencies: - ONNX Runtime library (external) - ONNXRuntime C++ API
2. TensorFlow Lite Backend (0%)¶
Priority: ๐ก MEDIUM
To Implement: - [ ] TFLiteModelLoader class - [ ] TFLiteInferenceEngine class - [ ] Delegate setup (GPU, NNAPI, CoreML) - [ ] Tensor allocation - [ ] Input/output tensor mapping - [ ] Error handling
Estimated Lines: ~400 LOC
Dependencies: - TensorFlow Lite library - TFLite C++ API
3. LibTorch Backend (0%)¶
Priority: ๐ก MEDIUM
To Implement: - [ ] TorchModelLoader class - [ ] TorchInferenceEngine class - [ ] Device management (CPU/GPU) - [ ] TorchScript loading - [ ] Tensor conversion (Torch โ AudioLab) - [ ] Error handling
Estimated Lines: ~350 LOC
Dependencies: - LibTorch (PyTorch C++) - Torch C++ API
4. Model Quantization (0%)¶
Priority: ๐ก MEDIUM
To Implement: - [ ] ModelQuantizer class - [ ] FP32 โ FP16 quantization - [ ] FP32 โ INT8 quantization (symmetric/asymmetric) - [ ] Calibration-based quantization - [ ] Quantization accuracy validation
Estimated Lines: ~300 LOC
5. Model Optimization (0%)¶
Priority: ๐ข LOW
To Implement: - [ ] ModelOptimizer class - [ ] Operator fusion - [ ] Constant folding - [ ] Dead code elimination - [ ] Graph optimization
Estimated Lines: ~250 LOC
๐ Development Roadmap¶
Phase 1: ONNX Backend (Week 1-3) ๐ฅ IN PROGRESS¶
- Set up ONNX Runtime dependency
- Implement ONNXModelLoader
- Implement ONNXInferenceEngine
- CPU execution provider
- Unit tests for ONNX backend
- Example: Load and run ONNX model
Deliverable: Working ONNX inference on CPU
Phase 2: GPU Acceleration (Week 4)¶
- CUDA execution provider (NVIDIA)
- DirectML execution provider (Windows)
- Performance benchmarks (CPU vs GPU)
Deliverable: GPU-accelerated inference
Phase 3: TFLite Backend (Week 5)¶
- TFLite integration
- Mobile GPU delegate
- Comparison with ONNX
Deliverable: TFLite inference working
Phase 4: LibTorch Backend (Week 6)¶
- LibTorch integration
- TorchScript loading
- Backend comparison
Deliverable: Three backends operational
Phase 5: Optimization (Week 7-8)¶
- Model quantization (FP16, INT8)
- Performance profiling
- Documentation and examples
Deliverable: Complete ML Framework v0.1
๐งช Testing Status¶
Unit Tests¶
- โ test_tensor.cpp: 12 test cases, all passing
- โ test_ml_types.cpp: 8 test cases, all passing
Total Test Coverage: ~60% (core types and tensor abstraction)
Integration Tests¶
- ๐ด Not yet implemented (requires backends)
Performance Tests¶
- ๐ด Not yet implemented (requires backends)
๐ Code Statistics¶
| Metric | Value |
|---|---|
| Total Header Files | 6 |
| Total Source Files | 1 (+ 3 pending backends) |
| Total Test Files | 2 |
| Total Example Files | 1 |
| Total Lines of Code (headers) | ~1,200 LOC |
| Total Lines of Code (impl) | ~280 LOC |
| Total Lines of Code (tests) | ~350 LOC |
| Total Lines of Code (examples) | ~180 LOC |
| Grand Total | ~2,010 LOC |
๐ Next Steps¶
Immediate (This Week)¶
- โณ Install ONNX Runtime SDK
- โณ Create ONNXModelLoader class
- โณ Create ONNXInferenceEngine class
- โณ Implement CPU execution provider
Short-term (Next 2 Weeks)¶
- โณ Complete ONNX backend
- โณ Add GPU acceleration (CUDA/DirectML)
- โณ Write integration tests
- โณ Create comprehensive examples
Medium-term (Month 2)¶
- โณ TFLite backend implementation
- โณ LibTorch backend implementation
- โณ Model quantization pipeline
- โณ Performance optimization
๐ Documentation Status¶
- โ Architecture design documented (README.md)
- โ API interfaces defined (header files)
- โ Basic usage example created
- ๐ด API reference (Doxygen) - pending
- ๐ด Integration guide - pending
- ๐ด Backend implementation guide - pending
๐ก Technical Decisions¶
Memory Management¶
Decision: Tensor owns data by default, but supports non-owning views Rationale: Balance safety and performance, allow zero-copy where possible
Interface Design¶
Decision: Abstract interfaces (IModelLoader, IInferenceEngine) with factory functions Rationale: Support multiple backends without client code changes
Error Handling¶
Decision: Return codes + getLastError() pattern Rationale: C++ exceptions not ideal for real-time audio, explicit error checking
Threading¶
Decision: Configurable thread count, async inference support Rationale: Flexibility for different use cases (real-time vs batch processing)
Last Updated: 2025-10-15 Next Review: 2025-10-22 (after ONNX backend completion) Status: ๐ก 40% Complete - Core infrastructure ready, backends pending