Skip to content

TAREA 00: ML Framework - Implementation Status

Last Updated: 2025-10-15 Status: ๐ŸŸก IN PROGRESS - Core interfaces implemented, backends pending


๐Ÿ“Š Progress Summary

Overall Progress: 40%

Component Status Progress Notes
Core Types & Enums โœ… Complete 100% MLTypes.h
Tensor Abstraction โœ… Complete 100% Tensor.h, full implementation
Model Loader Interface โœ… Complete 100% IModelLoader.h
Inference Engine Interface โœ… Complete 100% IInferenceEngine.h
Framework Utilities โœ… Complete 100% MLFramework.h/cpp
ONNX Backend ๐Ÿ”ด Not Started 0% Requires ONNX Runtime
TFLite Backend ๐Ÿ”ด Not Started 0% Requires TensorFlow Lite
LibTorch Backend ๐Ÿ”ด Not Started 0% Requires LibTorch
Unit Tests โœ… Complete 100% test_tensor.cpp, test_ml_types.cpp
Examples โœ… Complete 100% basic_usage.cpp
CMake Build โœ… Complete 100% CMakeLists.txt

โœ… Completed Components

1. MLTypes.h (100%)

Purpose: Core type definitions and enumerations

Features Implemented: - โœ… DataType enumeration (FLOAT32, FLOAT16, INT8, etc.) - โœ… ModelFormat enumeration (ONNX, TFLITE, TORCHSCRIPT, etc.) - โœ… ExecutionProvider enumeration (CPU, CUDA, DirectML, etc.) - โœ… QuantizationType enumeration - โœ… MLError enumeration - โœ… TensorInfo struct - โœ… ModelConfig struct - โœ… ModelMetadata struct - โœ… PerformanceStats struct - โœ… ProcessingContext struct - โœ… Helper functions (getDataTypeSize, getDataTypeName, etc.)

Lines of Code: ~350 LOC


2. Tensor.h (100%)

Purpose: Multi-dimensional array abstraction for ML data

Features Implemented: - โœ… Construction (empty, with shape, from existing data) - โœ… Copy and move semantics - โœ… Data access (typed and raw pointers) - โœ… Shape operations (reshape, dim, ndim, size, bytes) - โœ… Type conversion (cast) - โœ… Fill operations (fill, zero) - โœ… Clone operation - โœ… TensorInfo extraction - โœ… Memory management (owning and non-owning)

Lines of Code: ~250 LOC


3. IModelLoader.h (100%)

Purpose: Abstract interface for loading ML models

Features Defined: - โœ… loadModel(path) - Load from file - โœ… loadFromMemory(data, size) - Load from memory - โœ… unload() - Unload model - โœ… getMetadata() - Model information - โœ… getInputInfo() / getOutputInfo() - Tensor information - โœ… isLoaded() - Status check - โœ… getLastError() - Error handling

Lines of Code: ~45 LOC


4. IInferenceEngine.h (100%)

Purpose: Abstract interface for ML inference execution

Features Defined: - โœ… initialize(config) - Initialize engine - โœ… loadModel(path) - Load model - โœ… run(inputs, outputs) - Synchronous inference - โœ… runAsync(inputs, callback) - Asynchronous inference - โœ… getInputInfo() / getOutputInfo() - Tensor information - โœ… setNumThreads() - Threading configuration - โœ… setTimeout() - Timeout configuration - โœ… getStats() - Performance monitoring - โœ… Error handling

Lines of Code: ~120 LOC


5. MLFramework.h/cpp (100%)

Purpose: Main header and utility implementations

Features Implemented: - โœ… Version information - โœ… Backend detection (getBackendInfo) - โœ… Model format detection (detectModelFormat) - โœ… Recommended provider selection - โœ… Tensor validation utilities - โœ… Audio tensor creation/extraction - โœ… Factory functions (stub implementations)

Lines of Code: ~280 LOC (header + implementation)


6. Unit Tests (100%)

Files: test_tensor.cpp, test_ml_types.cpp

Test Coverage: - โœ… Tensor construction (empty, shaped, from data) - โœ… Tensor data access (read/write) - โœ… Tensor copy/move semantics - โœ… Tensor reshape operations - โœ… Tensor fill/zero operations - โœ… Audio tensor creation/extraction - โœ… DataType utilities - โœ… ModelFormat, ExecutionProvider names - โœ… TensorInfo size calculations - โœ… ModelConfig defaults - โœ… PerformanceStats reset

Lines of Code: ~350 LOC

Test Framework: Catch2 v3


7. Examples (100%)

File: basic_usage.cpp

Demonstrates: - โœ… Version information - โœ… Backend detection - โœ… Tensor creation and operations - โœ… Audio tensor handling - โœ… Model format detection - โœ… Configuration setup

Lines of Code: ~180 LOC


8. Build System (100%)

File: CMakeLists.txt

Features: - โœ… ml_framework library target - โœ… Optional backend integration (ONNX, TFLite, Torch) - โœ… Test integration (Catch2) - โœ… Example builds - โœ… Installation targets - โœ… Configuration summary

Lines of Code: ~150 LOC


๐Ÿ”ด Pending Components

1. ONNX Runtime Backend (0%)

Priority: ๐Ÿ”ฅ CRITICAL

To Implement: - [ ] ONNXModelLoader class - [ ] ONNXInferenceEngine class - [ ] Execution provider setup (CPU, CUDA, DirectML) - [ ] Session configuration - [ ] Input/output tensor mapping - [ ] Error handling - [ ] Performance profiling integration

Estimated Lines: ~500 LOC

Dependencies: - ONNX Runtime library (external) - ONNXRuntime C++ API


2. TensorFlow Lite Backend (0%)

Priority: ๐ŸŸก MEDIUM

To Implement: - [ ] TFLiteModelLoader class - [ ] TFLiteInferenceEngine class - [ ] Delegate setup (GPU, NNAPI, CoreML) - [ ] Tensor allocation - [ ] Input/output tensor mapping - [ ] Error handling

Estimated Lines: ~400 LOC

Dependencies: - TensorFlow Lite library - TFLite C++ API


3. LibTorch Backend (0%)

Priority: ๐ŸŸก MEDIUM

To Implement: - [ ] TorchModelLoader class - [ ] TorchInferenceEngine class - [ ] Device management (CPU/GPU) - [ ] TorchScript loading - [ ] Tensor conversion (Torch โ†” AudioLab) - [ ] Error handling

Estimated Lines: ~350 LOC

Dependencies: - LibTorch (PyTorch C++) - Torch C++ API


4. Model Quantization (0%)

Priority: ๐ŸŸก MEDIUM

To Implement: - [ ] ModelQuantizer class - [ ] FP32 โ†’ FP16 quantization - [ ] FP32 โ†’ INT8 quantization (symmetric/asymmetric) - [ ] Calibration-based quantization - [ ] Quantization accuracy validation

Estimated Lines: ~300 LOC


5. Model Optimization (0%)

Priority: ๐ŸŸข LOW

To Implement: - [ ] ModelOptimizer class - [ ] Operator fusion - [ ] Constant folding - [ ] Dead code elimination - [ ] Graph optimization

Estimated Lines: ~250 LOC


๐Ÿ“ˆ Development Roadmap

Phase 1: ONNX Backend (Week 1-3) ๐Ÿ”ฅ IN PROGRESS

  • Set up ONNX Runtime dependency
  • Implement ONNXModelLoader
  • Implement ONNXInferenceEngine
  • CPU execution provider
  • Unit tests for ONNX backend
  • Example: Load and run ONNX model

Deliverable: Working ONNX inference on CPU


Phase 2: GPU Acceleration (Week 4)

  • CUDA execution provider (NVIDIA)
  • DirectML execution provider (Windows)
  • Performance benchmarks (CPU vs GPU)

Deliverable: GPU-accelerated inference


Phase 3: TFLite Backend (Week 5)

  • TFLite integration
  • Mobile GPU delegate
  • Comparison with ONNX

Deliverable: TFLite inference working


Phase 4: LibTorch Backend (Week 6)

  • LibTorch integration
  • TorchScript loading
  • Backend comparison

Deliverable: Three backends operational


Phase 5: Optimization (Week 7-8)

  • Model quantization (FP16, INT8)
  • Performance profiling
  • Documentation and examples

Deliverable: Complete ML Framework v0.1


๐Ÿงช Testing Status

Unit Tests

  • โœ… test_tensor.cpp: 12 test cases, all passing
  • โœ… test_ml_types.cpp: 8 test cases, all passing

Total Test Coverage: ~60% (core types and tensor abstraction)

Integration Tests

  • ๐Ÿ”ด Not yet implemented (requires backends)

Performance Tests

  • ๐Ÿ”ด Not yet implemented (requires backends)

๐Ÿ“Š Code Statistics

Metric Value
Total Header Files 6
Total Source Files 1 (+ 3 pending backends)
Total Test Files 2
Total Example Files 1
Total Lines of Code (headers) ~1,200 LOC
Total Lines of Code (impl) ~280 LOC
Total Lines of Code (tests) ~350 LOC
Total Lines of Code (examples) ~180 LOC
Grand Total ~2,010 LOC

๐Ÿš€ Next Steps

Immediate (This Week)

  1. โณ Install ONNX Runtime SDK
  2. โณ Create ONNXModelLoader class
  3. โณ Create ONNXInferenceEngine class
  4. โณ Implement CPU execution provider

Short-term (Next 2 Weeks)

  1. โณ Complete ONNX backend
  2. โณ Add GPU acceleration (CUDA/DirectML)
  3. โณ Write integration tests
  4. โณ Create comprehensive examples

Medium-term (Month 2)

  1. โณ TFLite backend implementation
  2. โณ LibTorch backend implementation
  3. โณ Model quantization pipeline
  4. โณ Performance optimization

๐Ÿ“š Documentation Status

  • โœ… Architecture design documented (README.md)
  • โœ… API interfaces defined (header files)
  • โœ… Basic usage example created
  • ๐Ÿ”ด API reference (Doxygen) - pending
  • ๐Ÿ”ด Integration guide - pending
  • ๐Ÿ”ด Backend implementation guide - pending

๐Ÿ’ก Technical Decisions

Memory Management

Decision: Tensor owns data by default, but supports non-owning views Rationale: Balance safety and performance, allow zero-copy where possible

Interface Design

Decision: Abstract interfaces (IModelLoader, IInferenceEngine) with factory functions Rationale: Support multiple backends without client code changes

Error Handling

Decision: Return codes + getLastError() pattern Rationale: C++ exceptions not ideal for real-time audio, explicit error checking

Threading

Decision: Configurable thread count, async inference support Rationale: Flexibility for different use cases (real-time vs batch processing)


Last Updated: 2025-10-15 Next Review: 2025-10-22 (after ONNX backend completion) Status: ๐ŸŸก 40% Complete - Core infrastructure ready, backends pending