TAREA 01: Audio Generation - Neural Audio Synthesis¶
Status: ๐ด PLANNING - Architecture defined, ready for implementation
๐ฏ Purpose¶
Neural audio synthesis and generation using deep learning models including WaveNet, SampleRNN, NSynth, DDSP, and generative models (GANs, VAEs, Diffusion Models).
๐๏ธ Architecture¶
05_26_01_audio_generation/
โโโ include/
โ โโโ AudioGenerator.h # Main generator interface
โ โโโ WaveNetGenerator.h # WaveNet synthesis
โ โโโ SampleRNNGenerator.h # SampleRNN synthesis
โ โโโ NSynthGenerator.h # NSynth (Neural Synthesis)
โ โโโ DDSPGenerator.h # Differentiable DSP
โ โโโ GANGenerator.h # GAN-based generation
โ โโโ VAEGenerator.h # VAE-based generation
โ โโโ DiffusionGenerator.h # Diffusion model generation
โโโ src/
โ โโโ WaveNetGenerator.cpp
โ โโโ DDSPGenerator.cpp
โ โโโ ConditionalGeneration.cpp # Conditional synthesis
โ โโโ TimbreTransfer.cpp # Style/timbre transfer
โโโ tests/
โ โโโ test_wavenet.cpp
โ โโโ test_ddsp.cpp
โ โโโ benchmark_generation.cpp
โโโ examples/
โ โโโ simple_synthesis.cpp
โ โโโ timbre_transfer.cpp
โ โโโ conditional_generation.cpp
โโโ models/
โโโ wavenet_speech.onnx
โโโ ddsp_violin.onnx
โโโ nsynth_pretrained.onnx
๐ Key Features¶
1. Neural Oscillators¶
- WaveNet: Autoregressive waveform generation
- SampleRNN: Hierarchical RNN synthesis
- WaveGlow: Flow-based generative model
2. Timbre Transfer¶
- NSynth: Neural audio synthesis with timbre interpolation
- DDSP: Differentiable DSP for interpretable synthesis
- Style Transfer: Apply style of one audio to another
3. Generative Models¶
- GANs: GAN-based synthesis (WaveGAN, GANSynth)
- VAEs: Variational autoencoders for latent space exploration
- Diffusion Models: Denoising diffusion probabilistic models
4. Conditional Synthesis¶
- Text-to-audio
- MIDI-to-audio
- Pitch/loudness conditioning
- Multi-modal conditioning
๐ Implementation Plan¶
Phase 1: WaveNet Generator (Week 1-2)¶
1.1 WaveNet Architecture¶
class WaveNetGenerator : public IAudioGenerator {
public:
struct Config {
int num_layers = 30;
int num_blocks = 3;
int num_channels = 256;
int kernel_size = 2;
int sample_rate = 16000;
};
bool initialize(const Config& config);
// Generate audio from conditioning
std::vector<float> generate(
const Conditioning& condition,
int num_samples
);
// Fast generation (parallel WaveNet)
std::vector<float> generateFast(
const Conditioning& condition,
int num_samples
);
private:
std::unique_ptr<IInferenceEngine> engine_;
Config config_;
};
1.2 Conditioning Interface¶
struct Conditioning {
// Acoustic features
std::optional<std::vector<float>> mel_spectrogram;
std::optional<std::vector<float>> f0; // Pitch
std::optional<std::vector<float>> loudness;
// Categorical conditioning
std::optional<int> speaker_id;
std::optional<int> instrument_class;
// Text (for TTS)
std::optional<std::string> text;
std::optional<std::vector<int>> phonemes;
};
Phase 2: DDSP (Differentiable DSP) (Week 3-4)¶
2.1 DDSP Architecture¶
class DDSPGenerator : public IAudioGenerator {
public:
struct Harmonics {
std::vector<float> amplitudes; // Harmonic amplitudes
std::vector<float> frequencies; // Harmonic frequencies
};
struct NoiseParams {
std::vector<float> filtered_noise;
};
// Generate from interpretable parameters
std::vector<float> synthesize(
const Harmonics& harmonics,
const NoiseParams& noise,
const std::vector<float>& f0,
const std::vector<float>& loudness
);
// Timbre transfer
std::vector<float> transferTimbre(
const std::vector<float>& input_audio,
const std::string& target_timbre_model
);
private:
std::unique_ptr<HarmonicSynthesizer> harmonic_synth_;
std::unique_ptr<NoiseGenerator> noise_gen_;
std::unique_ptr<ReverbModule> reverb_;
};
2.2 DDSP Components¶
// Harmonic synthesizer (additive synthesis)
class HarmonicSynthesizer {
public:
std::vector<float> synthesize(
const std::vector<float>& amplitudes,
const std::vector<float>& frequencies,
float sample_rate,
int num_samples
);
};
// Filtered noise generator
class NoiseGenerator {
public:
std::vector<float> generate(
const std::vector<float>& filter_coeffs,
int num_samples
);
};
Phase 3: NSynth Generator (Week 5-6)¶
3.1 NSynth Interface¶
class NSynthGenerator : public IAudioGenerator {
public:
// Generate note with specific pitch and instrument
std::vector<float> generateNote(
float pitch, // MIDI note number
float velocity,
float duration_sec,
int instrument_id
);
// Interpolate between two timbres
std::vector<float> interpolateTimbre(
float pitch,
float velocity,
float duration_sec,
int instrument_a,
int instrument_b,
float mix // 0.0 = A, 1.0 = B
);
// Generate from latent code
std::vector<float> generateFromLatent(
const std::vector<float>& latent_code,
float pitch,
float velocity,
float duration_sec
);
private:
std::unique_ptr<WaveNetDecoder> decoder_;
std::unique_ptr<LatentEncoder> encoder_;
};
Phase 4: GAN-Based Generation (Week 7-8)¶
4.1 WaveGAN¶
class WaveGANGenerator : public IAudioGenerator {
public:
// Generate from random noise
std::vector<float> generateRandom(int num_samples);
// Generate from specific latent vector
std::vector<float> generateFromLatent(
const std::vector<float>& latent_vector
);
// Interpolate in latent space
std::vector<float> interpolate(
const std::vector<float>& latent_a,
const std::vector<float>& latent_b,
float t // Interpolation factor [0, 1]
);
private:
std::unique_ptr<IInferenceEngine> generator_;
int latent_dim_ = 100;
};
4.2 GANSynth (Spectrogram GAN)¶
class GANSynthGenerator : public IAudioGenerator {
public:
// Generate spectrogram then convert to audio
std::vector<float> generate(
float pitch,
const std::vector<float>& latent_vector
);
private:
std::unique_ptr<IInferenceEngine> generator_;
std::unique_ptr<PhaseReconstructor> phase_reconstructor_;
};
Phase 5: Diffusion Models (Week 9-10)¶
5.1 Diffusion-Based Synthesis¶
class DiffusionGenerator : public IAudioGenerator {
public:
struct DiffusionConfig {
int num_diffusion_steps = 50;
float noise_schedule_start = 1e-4f;
float noise_schedule_end = 0.02f;
};
// Generate audio via iterative denoising
std::vector<float> generate(
const Conditioning& condition,
int num_samples,
int num_steps = 50
);
// Fast sampling (DDIM, DPM-Solver)
std::vector<float> generateFast(
const Conditioning& condition,
int num_samples,
int num_steps = 10
);
private:
std::unique_ptr<IInferenceEngine> denoiser_;
DiffusionConfig config_;
};
๐งช Testing Strategy¶
Quality Metrics¶
- Perceptual quality: PESQ, POLQA (speech)
- Spectral distance: Log-spectral distance
- Reconstruction accuracy: MSE, STFT loss
- Listening tests: MOS (Mean Opinion Score)
Performance Tests¶
- Real-time factor (RTF): generation_time / audio_duration
- Latency: time from request to first sample
- Memory usage during generation
๐ Performance Targets¶
Generation Speed¶
- WaveNet: 0.1x real-time (fast WaveNet: 1x real-time)
- DDSP: 10x real-time (highly efficient)
- GAN: 100x real-time
- Diffusion: 0.5x real-time (50 steps), 2x real-time (10 steps, fast sampler)
Quality¶
- Perceptual quality: > 4.0 MOS (1-5 scale)
- Naturalness: Comparable to natural recordings for speech/music
๐ Usage Examples¶
Example 1: DDSP Timbre Transfer¶
#include "DDSPGenerator.h"
int main() {
DDSPGenerator generator;
generator.initialize("models/ddsp_violin.onnx");
// Load input audio (e.g., singing voice)
auto input_audio = loadAudio("input_voice.wav");
// Transfer timbre to violin
auto output = generator.transferTimbre(
input_audio,
"models/ddsp_violin.onnx"
);
saveAudio("output_violin.wav", output, 16000);
}
Example 2: NSynth Interpolation¶
#include "NSynthGenerator.h"
int main() {
NSynthGenerator generator;
generator.initialize("models/nsynth_pretrained.onnx");
// Interpolate between piano and guitar
int piano_id = 0;
int guitar_id = 5;
for (float mix = 0.0f; mix <= 1.0f; mix += 0.1f) {
auto audio = generator.interpolateTimbre(
60.0f, // Middle C
0.8f, // Velocity
2.0f, // Duration
piano_id,
guitar_id,
mix
);
std::string filename = "interpolation_" +
std::to_string(int(mix * 10)) + ".wav";
saveAudio(filename, audio, 16000);
}
}
Example 3: WaveGAN Synthesis¶
#include "GANGenerator.h"
int main() {
WaveGANGenerator generator;
generator.initialize("models/wavegan_drums.onnx");
// Generate random drum sounds
for (int i = 0; i < 10; ++i) {
auto audio = generator.generateRandom(16000); // 1 second
saveAudio("drum_" + std::to_string(i) + ".wav", audio, 16000);
}
}
๐ Dependencies¶
External Libraries¶
- ONNX Runtime: Model inference
- 05_26_00_ml_framework: ML infrastructure
- 05_04_DSP_PROCESSING: Audio processing (FFT, resampling)
- librosa (optional): Feature extraction for conditioning
Pre-trained Models¶
- WaveNet: Speech synthesis models
- DDSP: Various instrument models (violin, flute, trumpet)
- NSynth: Multi-instrument generative model
- WaveGAN: Drum synthesis, texture generation
๐ Research References¶
- WaveNet (van den Oord et al., 2016) - Autoregressive audio generation
- NSynth (Engel et al., 2017) - Neural audio synthesis with WaveNet
- DDSP (Engel et al., 2020) - Differentiable digital signal processing
- WaveGAN (Donahue et al., 2019) - Adversarial audio synthesis
- DiffWave (Kong et al., 2021) - Diffusion probabilistic model for waveforms
๐ Roadmap¶
Week 1-2: WaveNet¶
- WaveNet architecture implementation
- Conditioning interface
- Fast WaveNet (parallel generation)
Week 3-4: DDSP¶
- Harmonic synthesizer
- Noise generator
- Timbre transfer pipeline
Week 5-6: NSynth¶
- NSynth decoder integration
- Timbre interpolation
- Latent space exploration
Week 7-8: GANs¶
- WaveGAN generator
- GANSynth (spectrogram-based)
- Latent space interpolation
Week 9-10: Diffusion Models¶
- Diffusion model integration
- Fast sampling (DDIM, DPM-Solver)
- Conditional generation
Last Updated: 2025-10-15 Status: ๐ด Ready for implementation Priority: ๐ฅ High - Core feature for neural synthesis