TAREA 02: Parameter Optimization - Automatic DSP Tuning¶
Status: 🔴 PLANNING - Architecture defined, ready for implementation
🎯 Purpose¶
Automatic optimization of DSP parameters using machine learning, including gradient-free optimization (genetic algorithms, particle swarm), differentiable DSP for gradient-based tuning, and multi-objective optimization.
🏗️ Architecture¶
05_26_02_parameter_optimization/
├── include/
│ ├── ParameterOptimizer.h # Main optimizer interface
│ ├── GeneticOptimizer.h # Genetic algorithm
│ ├── ParticleSwarmOptimizer.h # PSO
│ ├── BayesianOptimizer.h # Bayesian optimization
│ ├── DifferentiableDSP.h # Gradient-based optimization
│ ├── ObjectiveFunction.h # Fitness/loss functions
│ └── PresetInterpolator.h # Preset morphing
├── src/
│ ├── GeneticOptimizer.cpp
│ ├── ParticleSwarmOptimizer.cpp
│ ├── BayesianOptimizer.cpp
│ ├── DifferentiableDSP.cpp
│ └── MultiObjectiveOptimizer.cpp
├── tests/
│ ├── test_genetic.cpp
│ ├── test_differentiable_dsp.cpp
│ └── benchmark_optimization.cpp
└── examples/
├── auto_compressor.cpp # Auto-tune compressor
├── eq_matching.cpp # EQ curve matching
└── reverb_optimization.cpp
🔑 Key Features¶
1. Gradient-Free Optimization¶
- Genetic Algorithms: Population-based evolutionary search
- Particle Swarm Optimization: Swarm intelligence
- Bayesian Optimization: Gaussian process-based search
- Simulated Annealing: Probabilistic optimization
2. Gradient-Based Optimization¶
- Differentiable DSP: Backprop through audio processing
- Adam/SGD optimizers: Fast convergence
- Automatic differentiation: Compute gradients automatically
3. Multi-Objective Optimization¶
- Pareto frontier: Trade-off between objectives
- Weighted sum: Balance sound quality + CPU usage
- NSGA-II: Non-dominated sorting genetic algorithm
4. Preset Generation¶
- Interpolation: Smooth preset morphing
- Style transfer: Apply characteristics of reference audio
- Preset recommendation: ML-based suggestions
📋 Implementation Plan¶
Phase 1: Genetic Algorithm Optimizer (Week 1-2)¶
class GeneticOptimizer : public IParameterOptimizer {
public:
struct Config {
int population_size = 100;
int num_generations = 50;
float mutation_rate = 0.1f;
float crossover_rate = 0.7f;
SelectionMethod selection = SelectionMethod::Tournament;
};
// Optimize parameters to match target
ParameterSet optimize(
const IAudioProcessor& processor,
const ObjectiveFunction& objective,
const ParameterBounds& bounds
);
private:
std::vector<Individual> population_;
std::mt19937 rng_;
void initializePopulation(const ParameterBounds& bounds);
void selection();
void crossover();
void mutation();
};
Phase 2: Particle Swarm Optimization (Week 3)¶
class ParticleSwarmOptimizer : public IParameterOptimizer {
public:
struct Config {
int num_particles = 50;
int num_iterations = 100;
float inertia = 0.7f;
float cognitive = 1.5f;
float social = 1.5f;
};
ParameterSet optimize(
const IAudioProcessor& processor,
const ObjectiveFunction& objective,
const ParameterBounds& bounds
);
private:
struct Particle {
ParameterSet position;
ParameterSet velocity;
ParameterSet best_position;
float best_fitness;
};
std::vector<Particle> swarm_;
ParameterSet global_best_;
};
Phase 3: Differentiable DSP (Week 4-5)¶
class DifferentiableDSP : public IParameterOptimizer {
public:
// Optimize using gradient descent
ParameterSet optimize(
const IAudioProcessor& processor,
const std::vector<float>& target_audio,
const std::vector<float>& input_audio,
int num_iterations = 1000
);
// Compute gradients via automatic differentiation
ParameterGradients computeGradients(
const IAudioProcessor& processor,
const ParameterSet& params,
const std::vector<float>& loss_gradient
);
private:
std::unique_ptr<Optimizer> optimizer_; // Adam, SGD, etc.
};
Phase 4: Multi-Objective Optimization (Week 6)¶
class MultiObjectiveOptimizer {
public:
struct Objectives {
float sound_quality; // Perceptual loss
float cpu_usage; // Real-time performance
float latency; // Processing delay
};
// Find Pareto-optimal solutions
std::vector<ParameterSet> optimizePareto(
const IAudioProcessor& processor,
const MultiObjectiveFunction& objectives,
const ParameterBounds& bounds
);
// Weighted sum approach
ParameterSet optimizeWeighted(
const IAudioProcessor& processor,
const MultiObjectiveFunction& objectives,
const ParameterBounds& bounds,
const std::vector<float>& weights
);
};
📖 Usage Examples¶
Example 1: Auto-Tune Compressor¶
#include "GeneticOptimizer.h"
#include "CompressorDSP.h"
int main() {
CompressorDSP compressor;
GeneticOptimizer optimizer;
// Define target characteristics
ObjectiveFunction objective = [](const std::vector<float>& output) {
float target_rms = 0.5f;
float target_crest_factor = 6.0f;
float actual_rms = computeRMS(output);
float actual_crest = computeCrestFactor(output);
return std::abs(actual_rms - target_rms) +
std::abs(actual_crest - target_crest);
};
// Define parameter bounds
ParameterBounds bounds;
bounds.add("threshold", -60.0f, 0.0f);
bounds.add("ratio", 1.0f, 20.0f);
bounds.add("attack", 0.1f, 100.0f); // ms
bounds.add("release", 10.0f, 1000.0f); // ms
// Optimize
auto optimal_params = optimizer.optimize(
compressor,
objective,
bounds
);
std::cout << "Optimal threshold: " << optimal_params["threshold"] << " dB\n";
std::cout << "Optimal ratio: " << optimal_params["ratio"] << ":1\n";
}
Example 2: EQ Matching¶
#include "DifferentiableDSP.h"
#include "ParametricEQ.h"
int main() {
ParametricEQ eq;
DifferentiableDSP optimizer;
// Load target audio (reference track)
auto target_audio = loadAudio("reference.wav");
// Load input audio (to be EQ'd)
auto input_audio = loadAudio("input.wav");
// Optimize EQ to match target spectrum
auto optimal_params = optimizer.optimize(
eq,
target_audio,
input_audio,
1000 // iterations
);
// Apply optimized EQ
eq.setParameters(optimal_params);
auto output = eq.process(input_audio);
saveAudio("output_matched.wav", output);
}
📚 Research References¶
- Differentiable Digital Signal Processing (Engel et al., 2020)
- NSGA-II (Deb et al., 2002) - Multi-objective optimization
- Bayesian Optimization (Snoek et al., 2012)
- AutoML for Audio - Automated hyperparameter tuning
🚀 Roadmap¶
Week 1-2: Genetic Algorithms¶
- Population management
- Fitness evaluation
- Selection, crossover, mutation
Week 3: PSO¶
- Particle swarm implementation
- Convergence criteria
Week 4-5: Differentiable DSP¶
- Gradient computation
- Adam optimizer integration
Week 6: Multi-Objective¶
- Pareto frontier computation
- Trade-off visualization
Last Updated: 2025-10-15 Status: 🔴 Ready for implementation Priority: 🔥 High - Critical for intelligent automation