TAREA 05: Noise Reduction - ML-Based Denoising¶
Status: 🔴 PLANNING
🎯 Purpose¶
Intelligent noise reduction using machine learning for speech enhancement, background noise removal, and artifact suppression.
🏗️ Key Components¶
- Spectral Denoising: Wiener filtering + ML
- Waveform Denoising: WaveUNet, SEGAN
- Speech Enhancement: RNNoise, DeepFilterNet
- Adaptive Noise Profiling: Automatic noise estimation
📋 Architecture¶
class MLNoiseReducer {
public:
// Single-pass denoising
std::vector<float> denoise(const std::vector<float>& noisy_audio);
// Real-time denoising with state
void denoiseRealTime(const float* input, float* output,
int num_samples);
// Adaptive noise profiling
void learnNoiseProfile(const std::vector<float>& noise_sample);
// Control noise reduction strength
void setReductionStrength(float strength); // 0.0 - 1.0
};
🎯 Use Cases¶
- Podcast cleanup
- Field recording restoration
- Live broadcast denoising
- Voice-over cleaning
- Video call enhancement
📊 Performance Targets¶
- Quality: PESQ > 3.5, POLQA > 3.8
- Speed: 10x real-time (offline), 1x real-time (online)
- Latency: < 20ms for real-time mode
📚 Models¶
- RNNoise: Recurrent neural network denoiser
- DeepFilterNet: Deep filtering network
- SEGAN: Speech enhancement GAN
- WaveUNet: U-Net for waveforms
🔧 Implementation¶
// Example: Real-time speech enhancement
MLNoiseReducer reducer;
reducer.initialize("models/rnnoise.onnx");
reducer.setReductionStrength(0.8f);
// Process audio buffer
float input_buffer[512];
float output_buffer[512];
reducer.denoiseRealTime(input_buffer, output_buffer, 512);
Priority: 🔥 Critical - Essential for production-quality audio