TAREA 07: Anomaly Detection - Audio Quality Monitoring¶
Status: 🔴 PLANNING
🎯 Purpose¶
Real-time audio quality monitoring, glitch detection, and artifact identification using unsupervised learning.
🏗️ Key Components¶
- Autoencoder-Based Detection: Reconstruction error anomaly detection
- Statistical Outlier Detection: Z-score, isolation forest
- Real-Time Monitoring: Stream-based anomaly detection
- Artifact Detection: Clicks, pops, distortion, dropouts
📋 Architecture¶
class AnomalyDetector {
public:
// Detect anomalies in audio buffer
AnomalyReport detectAnomalies(const std::vector<float>& audio);
// Real-time monitoring
void monitorRealTime(const float* audio, int num_samples,
std::function<void(Anomaly)> callback);
// Train on normal audio
void trainNormalProfile(const std::vector<std::vector<float>>& normal_audio);
// Set sensitivity threshold
void setSensitivity(float threshold); // 0.0 - 1.0
};
struct Anomaly {
enum Type { Click, Pop, Distortion, Dropout, Unknown };
Type type;
int sample_offset;
float confidence;
float severity; // 0.0 - 1.0
};
🎯 Use Cases¶
- Live performance monitoring
- Recording quality check
- Automatic error detection in mastering
- Hardware failure prediction
- Broadcast signal monitoring
📊 Techniques¶
- Autoencoder: Learn normal audio distribution
- One-Class SVM: Outlier detection
- Isolation Forest: Ensemble-based anomaly detection
- LSTM Autoencoders: Temporal anomaly detection
🔧 Example¶
AnomalyDetector detector;
detector.initialize("models/autoencoder_anomaly.onnx");
detector.trainNormalProfile(normal_recordings);
detector.setSensitivity(0.8f);
// Real-time monitoring
detector.monitorRealTime(audio_buffer, buffer_size,
[](Anomaly anomaly) {
std::cout << "Anomaly detected at sample " << anomaly.sample_offset
<< " Type: " << anomaly.type
<< " Severity: " << anomaly.severity << "\n";
}
);
Priority: 🟡 Medium - Important for professional workflows