Skip to content

TAREA 07: Anomaly Detection - Audio Quality Monitoring

Status: 🔴 PLANNING

🎯 Purpose

Real-time audio quality monitoring, glitch detection, and artifact identification using unsupervised learning.

🏗️ Key Components

  • Autoencoder-Based Detection: Reconstruction error anomaly detection
  • Statistical Outlier Detection: Z-score, isolation forest
  • Real-Time Monitoring: Stream-based anomaly detection
  • Artifact Detection: Clicks, pops, distortion, dropouts

📋 Architecture

class AnomalyDetector {
public:
    // Detect anomalies in audio buffer
    AnomalyReport detectAnomalies(const std::vector<float>& audio);

    // Real-time monitoring
    void monitorRealTime(const float* audio, int num_samples,
                        std::function<void(Anomaly)> callback);

    // Train on normal audio
    void trainNormalProfile(const std::vector<std::vector<float>>& normal_audio);

    // Set sensitivity threshold
    void setSensitivity(float threshold);  // 0.0 - 1.0
};

struct Anomaly {
    enum Type { Click, Pop, Distortion, Dropout, Unknown };

    Type type;
    int sample_offset;
    float confidence;
    float severity;  // 0.0 - 1.0
};

🎯 Use Cases

  • Live performance monitoring
  • Recording quality check
  • Automatic error detection in mastering
  • Hardware failure prediction
  • Broadcast signal monitoring

📊 Techniques

  • Autoencoder: Learn normal audio distribution
  • One-Class SVM: Outlier detection
  • Isolation Forest: Ensemble-based anomaly detection
  • LSTM Autoencoders: Temporal anomaly detection

🔧 Example

AnomalyDetector detector;
detector.initialize("models/autoencoder_anomaly.onnx");
detector.trainNormalProfile(normal_recordings);
detector.setSensitivity(0.8f);

// Real-time monitoring
detector.monitorRealTime(audio_buffer, buffer_size,
    [](Anomaly anomaly) {
        std::cout << "Anomaly detected at sample " << anomaly.sample_offset
                  << " Type: " << anomaly.type
                  << " Severity: " << anomaly.severity << "\n";
    }
);

Priority: 🟡 Medium - Important for professional workflows