TAREA 08: Personalization - Adaptive User Models¶
Status: 🔴 PLANNING
🎯 Purpose¶
Adaptive audio processing that learns user preferences and automatically adjusts to context (genre, mood, listening environment).
🏗️ Key Components¶
- User Interaction Tracking: Parameter adjustments, preset usage
- Preference Modeling: Collaborative filtering, matrix factorization
- Context-Aware Processing: Genre, time of day, mood detection
- Reinforcement Learning: Adaptive effects that improve over time
📋 Architecture¶
class PersonalizationEngine {
public:
// Track user interaction
void recordInteraction(const UserAction& action);
// Get personalized preset recommendations
std::vector<Preset> getRecommendations(
const AudioContext& context,
int num_recommendations = 5
);
// Adapt effect parameters to user style
ParameterSet adaptParameters(
const IAudioProcessor& processor,
const AudioContext& context
);
// Update user model
void updateModel(const std::vector<UserAction>& history);
};
struct AudioContext {
std::string genre; // "rock", "jazz", "classical"
std::string mood; // "energetic", "calm", "aggressive"
std::string time_of_day; // "morning", "evening", "night"
std::string environment; // "studio", "live", "home"
};
struct UserAction {
enum Type { PresetLoad, ParameterChange, Like, Dislike };
Type type;
std::string effect_id;
ParameterSet parameters;
AudioContext context;
float rating; // -1.0 to 1.0
};
🎯 Use Cases¶
- Auto-adjust EQ based on listening history
- Smart compression that learns user style
- Genre-adaptive processing chains
- Mood-based effect recommendations
- Context-aware dynamic range
📚 Techniques¶
- Collaborative Filtering: User-user, item-item similarity
- Matrix Factorization: Latent factor models
- Contextual Bandits: Exploration vs exploitation
- Deep Reinforcement Learning: Policy gradient methods
🔧 Example¶
PersonalizationEngine engine;
engine.initialize("models/user_model.onnx");
// Track user actions
UserAction action;
action.type = UserAction::ParameterChange;
action.effect_id = "compressor";
action.parameters["threshold"] = -20.0f;
action.context.genre = "rock";
action.rating = 0.8f;
engine.recordInteraction(action);
// Get personalized recommendations
AudioContext context;
context.genre = "rock";
context.mood = "energetic";
auto recommendations = engine.getRecommendations(context, 5);
for (const auto& preset : recommendations) {
std::cout << "Recommended: " << preset.name
<< " (confidence: " << preset.confidence << ")\n";
}
📊 Performance Targets¶
- Accuracy: > 75% recommendation acceptance rate
- Cold Start: Reasonable recommendations within 10 interactions
- Privacy: On-device learning, no data upload required
Priority: 🟡 Medium - Enhances long-term user experience