TAREA 09: Audio Restoration - ML-Based Repair¶
Status: 🔴 PLANNING
🎯 Purpose¶
Machine learning-based restoration of degraded audio including declipping, bandwidth extension, missing sample reconstruction, and historical recording enhancement.
🏗️ Key Components¶
- Declipping: Reconstruct clipped audio peaks
- Bandwidth Extension: Audio super-resolution (upsample 8kHz → 48kHz)
- Missing Sample Reconstruction: Inpainting for dropouts
- Historical Enhancement: Vinyl/tape restoration, noise + distortion removal
📋 Architecture¶
class AudioRestorer {
public:
// Declip distorted audio
std::vector<float> declip(const std::vector<float>& clipped_audio);
// Extend bandwidth (super-resolution)
std::vector<float> extendBandwidth(
const std::vector<float>& lowband_audio,
int target_sample_rate
);
// Reconstruct missing samples
std::vector<float> reconstructMissing(
const std::vector<float>& audio,
const std::vector<bool>& missing_mask
);
// Restore historical recording
std::vector<float> restoreHistorical(
const std::vector<float>& degraded_audio,
RestorationType type
);
};
enum class RestorationType {
Vinyl, // Remove crackle, pops, rumble
Tape, // Remove hiss, wow, flutter
LowBitrate, // Upsample from low-quality source
Damaged // General restoration
};
🎯 Use Cases¶
- Vinyl/tape restoration
- Low-bitrate audio upsampling (MP3 64kbps → lossless)
- Clipped audio recovery (from overdriven recordings)
- Historical archive restoration
- Damaged recording repair
📚 Techniques¶
- U-Net Architecture: Encoder-decoder for restoration
- GAN-Based Super-Resolution: Generate high-frequency content
- Autoregressive Models: WaveNet for sample reconstruction
- Attention Mechanisms: Focus on degraded regions
🔧 Example¶
AudioRestorer restorer;
restorer.initialize("models/audio_super_resolution.onnx");
// Example 1: Bandwidth extension
auto lowband_audio = loadAudio("phone_call_8khz.wav"); // 8 kHz
auto highband_audio = restorer.extendBandwidth(
lowband_audio,
48000 // Target: 48 kHz
);
saveAudio("restored_48khz.wav", highband_audio, 48000);
// Example 2: Declipping
auto clipped_audio = loadAudio("overdriven_guitar.wav");
auto declipped = restorer.declip(clipped_audio);
saveAudio("declipped_guitar.wav", declipped, 44100);
// Example 3: Historical restoration
auto vinyl_recording = loadAudio("old_jazz_vinyl.wav");
auto restored = restorer.restoreHistorical(
vinyl_recording,
RestorationType::Vinyl
);
saveAudio("restored_jazz.wav", restored, 44100);
📊 Performance Targets¶
- Declipping: THD+N < 1% after restoration
- Bandwidth Extension: Perceptual quality comparable to original
- Speed: 5x real-time (offline processing)
- Quality: PESQ > 3.5, POLQA > 3.8
📚 Models¶
- Audio Super-Resolution: GAN-based upsampling
- Declipping Networks: U-Net + adversarial loss
- Vinyl Restoration: Multi-stage noise removal
- WaveUNet: Waveform-to-waveform restoration
🔬 Research References¶
- Audio Super-Resolution (Kuleshov et al., 2017)
- Audio Declipping (Lagrange et al., 2019)
- Audio Inpainting (Marafioti et al., 2019)
- Historical Recording Enhancement (Godsill et al., 2002)
Priority: 🟡 Medium - Specialized but high-value feature