Skip to content

05_26_MACHINE_LEARNING - Implementation Plan

Status: ๐Ÿ”ด PLANNING COMPLETE - Ready for Phase 1 implementation Created: 2025-10-15 Target Completion: Q4 2025


๐ŸŽฏ Overview

This document outlines the complete implementation plan for AudioLab's Machine Learning subsystem, covering all 10 TAREAS from foundation (ML Framework) to advanced features (Audio Restoration).


๐Ÿ“Š Implementation Phases

PHASE 1: Foundation (Q1 2025 - 10 weeks)

Goal: Build core ML infrastructure

TAREA 00: ML Framework โšก CRITICAL

  • Week 1-2: Core interfaces (IModelLoader, IInferenceEngine, Tensor)
  • Week 3: ONNX Runtime backend (CPU, CUDA, DirectML)
  • Week 4: TensorFlow Lite backend (mobile, CoreML)
  • Week 5: LibTorch backend (PyTorch C++)
  • Week 6: Quantization & optimization pipeline

Deliverables: - [x] Architecture design - [ ] ml_framework library with 3 backends - [ ] Model quantization tools (FP32 โ†’ FP16 โ†’ INT8) - [ ] Comprehensive unit tests - [ ] Performance benchmarks

Success Criteria: - โœ“ Load ONNX/TFLite/TorchScript models - โœ“ Run inference on CPU/GPU - โœ“ < 5ms latency for small models - โœ“ INT8 quantization working


PHASE 2: Core ML Features (Q2 2025 - 12 weeks)

TAREA 05: Noise Reduction ๐Ÿ”ฅ HIGH PRIORITY

  • Week 1-2: RNNoise integration
  • Week 3-4: Real-time denoising pipeline
  • Week 5-6: Speech enhancement (DeepFilterNet)

Use Cases: Podcast cleanup, voice-over cleaning

TAREA 03: Classification ๐Ÿ”ฅ HIGH PRIORITY

  • Week 7-8: Feature extraction (MFCC, mel-spec)
  • Week 9-10: CNN classifier integration (VGGish, YAMNet)
  • Week 11-12: Real-time classification with sliding window

Use Cases: Instrument detection, genre classification

TAREA 07: Anomaly Detection ๐ŸŸก MEDIUM

  • Week 13-14: Autoencoder-based detection
  • Week 15: Real-time monitoring

Use Cases: Live performance monitoring, quality check

Success Criteria: - โœ“ Real-time noise reduction (PESQ > 3.5) - โœ“ Accurate classification (>90% accuracy on test set) - โœ“ Anomaly detection working in real-time


PHASE 3: Advanced Features (Q3 2025 - 14 weeks)

TAREA 04: Source Separation ๐Ÿ”ฅ HIGH PRIORITY

  • Week 1-3: Spleeter 4-stem integration
  • Week 4-6: Demucs hybrid separation
  • Week 7: Real-time stem extraction

Use Cases: Remix preparation, vocal removal

TAREA 01: Audio Generation ๐Ÿ”ฅ HIGH PRIORITY

  • Week 8-9: DDSP implementation
  • Week 10-11: Timbre transfer
  • Week 12-13: WaveNet/NSynth integration
  • Week 14: GANSynth integration

Use Cases: Neural synthesis, AI-powered instruments

TAREA 02: Parameter Optimization ๐Ÿ”ฅ HIGH PRIORITY

  • Week 15-16: Genetic algorithm optimizer
  • Week 17: Differentiable DSP
  • Week 18: Multi-objective optimization

Use Cases: Auto-tune compressor, EQ matching

Success Criteria: - โœ“ 4-stem separation (SDR > 6 dB vocals) - โœ“ DDSP timbre transfer working - โœ“ Auto-parameter tuning functional


PHASE 4: Intelligence & Refinement (Q4 2025 - 10 weeks)

TAREA 06: Preset Generation ๐ŸŸก MEDIUM

  • Week 1-2: Audio-to-preset mapping
  • Week 3-4: Preset recommendation engine
  • Week 5: Preset interpolation

Use Cases: "Make it sound like X"

TAREA 08: Personalization ๐ŸŸก MEDIUM

  • Week 6-7: User interaction tracking
  • Week 8: Collaborative filtering
  • Week 9: Context-aware recommendations
  • Week 10: Reinforcement learning integration

Use Cases: Adaptive processing, smart recommendations

TAREA 09: Audio Restoration ๐ŸŸก MEDIUM

  • Week 11-12: Declipping network
  • Week 13: Bandwidth extension
  • Week 14: Historical restoration

Use Cases: Vinyl restoration, low-bitrate upsampling

Success Criteria: - โœ“ Preset generation from reference audio - โœ“ Personalization improving over time - โœ“ Restoration quality acceptable (PESQ > 3.5)


๐Ÿ—๏ธ Technical Architecture

Dependency Graph

Level 0 (Foundation):
  โ”œโ”€ 05_26_00_ml_framework โ† ALL other TAREAS depend on this

Level 1 (Core Features):
  โ”œโ”€ 05_26_03_classification
  โ”œโ”€ 05_26_05_noise_reduction
  โ””โ”€ 05_26_07_anomaly_detection

Level 2 (Advanced Features):
  โ”œโ”€ 05_26_04_source_separation
  โ”œโ”€ 05_26_01_audio_generation
  โ””โ”€ 05_26_02_parameter_optimization
      โ””โ”€ depends on: 01 (DDSP for differentiable DSP)

Level 3 (Intelligence):
  โ”œโ”€ 05_26_06_preset_generation
  โ”‚   โ””โ”€ depends on: 02 (parameter optimization), 03 (classification)
  โ”œโ”€ 05_26_08_personalization
  โ”‚   โ””โ”€ depends on: 03 (classification), 06 (preset generation)
  โ””โ”€ 05_26_09_audio_restoration
      โ””โ”€ depends on: 05 (noise reduction)

Integration Points

External Dependencies:
  โ”œโ”€ ONNX Runtime (Microsoft)
  โ”œโ”€ TensorFlow Lite (Google)
  โ”œโ”€ LibTorch (PyTorch C++)
  โ””โ”€ OpenVINO (Intel, optional)

AudioLab Internal Dependencies:
  โ”œโ”€ 05_04_DSP_PROCESSING     (Audio primitives, FFT)
  โ”œโ”€ 05_11_GRAPH_SYSTEM       (ML nodes in graph)
  โ”œโ”€ 05_14_PRESET_SYSTEM      (Preset integration)
  โ”œโ”€ 05_16_PERFORMANCE_VARIANTS (SIMD optimization)
  โ””โ”€ 05_25_AI_ORCHESTRATOR    (Model orchestration)

๐Ÿ“ฆ Deliverables by Phase

Phase 1 Deliverables

  • libml_framework.a - Core ML library
  • Model quantization CLI tool
  • Performance benchmark suite
  • Documentation (API reference)

Phase 2 Deliverables

  • libml_noise_reduction.a
  • libml_classification.a
  • libml_anomaly_detection.a
  • Pre-trained models (RNNoise, VGGish, YAMNet)
  • Real-time processing examples

Phase 3 Deliverables

  • libml_source_separation.a (Spleeter, Demucs)
  • libml_audio_generation.a (DDSP, WaveNet, GANs)
  • libml_parameter_optimization.a
  • Pre-trained models (Spleeter 4-stem, DDSP violin/flute)

Phase 4 Deliverables

  • libml_preset_generation.a
  • libml_personalization.a
  • libml_audio_restoration.a
  • Complete ML subsystem integration

๐Ÿงช Testing Strategy

Unit Tests (Per TAREA)

  • Model loading correctness
  • Inference output validation
  • Performance regression tests
  • Memory leak detection

Integration Tests

  • Multi-backend comparison (ONNX vs TFLite vs Torch)
  • Real-time processing pipeline
  • Graph system integration

Performance Tests

  • Latency benchmarks (p50, p95, p99)
  • Throughput testing
  • CPU/GPU utilization profiling
  • Memory usage under load

Quality Tests

  • Audio quality metrics (PESQ, POLQA, SDR)
  • Perceptual listening tests
  • A/B comparison with reference implementations

๐Ÿ“Š Success Metrics

Performance Metrics

Metric Target Measured
Model Load Time < 500ms TBD
Small Model Latency < 5ms TBD
Medium Model Latency < 20ms TBD
CPU Usage (real-time) < 15% TBD
Memory per Model < 100MB TBD

Quality Metrics

Metric Target Measured
Noise Reduction (PESQ) > 3.5 TBD
Classification Accuracy > 90% TBD
Source Separation (SDR) > 6 dB TBD
Restoration Quality > 3.5 PESQ TBD

User Experience Metrics

Metric Target Measured
Preset Recommendation Acceptance > 75% TBD
Personalization Improvement +20% over time TBD
Feature Usage > 50% users try ML features TBD

๐Ÿ”ง Development Tools

Build System

# CMakeLists.txt for ML subsystem
find_package(onnxruntime REQUIRED)
find_package(TensorFlowLite REQUIRED)
find_package(Torch REQUIRED)

add_subdirectory(05_26_00_ml_framework)
add_subdirectory(05_26_01_audio_generation)
# ... etc

Model Management

  • Training: Python (PyTorch, TensorFlow)
  • Conversion: ONNX export, TFLite conversion
  • Optimization: ONNX Optimizer, TFLite Converter
  • Deployment: Model registry, versioning

CI/CD Pipeline

  • Automated testing on push
  • Performance benchmarks on PR
  • Model validation before merge
  • Nightly builds with latest models

๐Ÿ“š Documentation Requirements

Per TAREA Documentation

  • API Reference (Doxygen)
  • Architecture diagrams
  • Usage examples
  • Performance characteristics
  • Troubleshooting guide

System-Wide Documentation

  • ML Framework Overview
  • Model Training Guide
  • Deployment Guide
  • Integration Guide
  • Best Practices

โš ๏ธ Risk Mitigation

Technical Risks

Risk Impact Mitigation
Model latency too high High Quantization, model pruning, GPU acceleration
Accuracy below target High Larger models, more training data, ensemble methods
Memory usage excessive Medium Model compression, streaming inference
GPU availability Medium CPU fallback, DirectML, Metal support

Project Risks

Risk Impact Mitigation
Phase 1 delay Critical Prioritize core framework, parallel development
Model licensing issues High Use only open-source/permissive models
Hardware compatibility Medium Multi-backend support, extensive testing

๐Ÿš€ Next Steps

Immediate Actions (This Week)

  1. Set up development environment
  2. Install ONNX Runtime, TFLite, LibTorch
  3. Create CMake build configuration
  4. Implement core IModelLoader interface

Week 2-3

  1. Implement Tensor abstraction
  2. Create ONNX backend
  3. Write first unit tests

Month 1 Goal

  • Complete TAREA 00 (ML Framework)
  • Successfully load and run first ONNX model
  • Benchmarks showing < 5ms latency

๐Ÿ“ž Contact & Support

Primary Developer: TBD ML Research Lead: TBD Integration Support: AudioLab Core Team


Last Updated: 2025-10-15 Version: 1.0 Status: ๐Ÿ”ด Planning Complete - Ready for Implementation