05_26_MACHINE_LEARNING - Implementation Plan¶
Status: ๐ด PLANNING COMPLETE - Ready for Phase 1 implementation Created: 2025-10-15 Target Completion: Q4 2025
๐ฏ Overview¶
This document outlines the complete implementation plan for AudioLab's Machine Learning subsystem, covering all 10 TAREAS from foundation (ML Framework) to advanced features (Audio Restoration).
๐ Implementation Phases¶
PHASE 1: Foundation (Q1 2025 - 10 weeks)¶
Goal: Build core ML infrastructure
TAREA 00: ML Framework โก CRITICAL¶
- Week 1-2: Core interfaces (IModelLoader, IInferenceEngine, Tensor)
- Week 3: ONNX Runtime backend (CPU, CUDA, DirectML)
- Week 4: TensorFlow Lite backend (mobile, CoreML)
- Week 5: LibTorch backend (PyTorch C++)
- Week 6: Quantization & optimization pipeline
Deliverables: - [x] Architecture design - [ ] ml_framework library with 3 backends - [ ] Model quantization tools (FP32 โ FP16 โ INT8) - [ ] Comprehensive unit tests - [ ] Performance benchmarks
Success Criteria: - โ Load ONNX/TFLite/TorchScript models - โ Run inference on CPU/GPU - โ < 5ms latency for small models - โ INT8 quantization working
PHASE 2: Core ML Features (Q2 2025 - 12 weeks)¶
TAREA 05: Noise Reduction ๐ฅ HIGH PRIORITY¶
- Week 1-2: RNNoise integration
- Week 3-4: Real-time denoising pipeline
- Week 5-6: Speech enhancement (DeepFilterNet)
Use Cases: Podcast cleanup, voice-over cleaning
TAREA 03: Classification ๐ฅ HIGH PRIORITY¶
- Week 7-8: Feature extraction (MFCC, mel-spec)
- Week 9-10: CNN classifier integration (VGGish, YAMNet)
- Week 11-12: Real-time classification with sliding window
Use Cases: Instrument detection, genre classification
TAREA 07: Anomaly Detection ๐ก MEDIUM¶
- Week 13-14: Autoencoder-based detection
- Week 15: Real-time monitoring
Use Cases: Live performance monitoring, quality check
Success Criteria: - โ Real-time noise reduction (PESQ > 3.5) - โ Accurate classification (>90% accuracy on test set) - โ Anomaly detection working in real-time
PHASE 3: Advanced Features (Q3 2025 - 14 weeks)¶
TAREA 04: Source Separation ๐ฅ HIGH PRIORITY¶
- Week 1-3: Spleeter 4-stem integration
- Week 4-6: Demucs hybrid separation
- Week 7: Real-time stem extraction
Use Cases: Remix preparation, vocal removal
TAREA 01: Audio Generation ๐ฅ HIGH PRIORITY¶
- Week 8-9: DDSP implementation
- Week 10-11: Timbre transfer
- Week 12-13: WaveNet/NSynth integration
- Week 14: GANSynth integration
Use Cases: Neural synthesis, AI-powered instruments
TAREA 02: Parameter Optimization ๐ฅ HIGH PRIORITY¶
- Week 15-16: Genetic algorithm optimizer
- Week 17: Differentiable DSP
- Week 18: Multi-objective optimization
Use Cases: Auto-tune compressor, EQ matching
Success Criteria: - โ 4-stem separation (SDR > 6 dB vocals) - โ DDSP timbre transfer working - โ Auto-parameter tuning functional
PHASE 4: Intelligence & Refinement (Q4 2025 - 10 weeks)¶
TAREA 06: Preset Generation ๐ก MEDIUM¶
- Week 1-2: Audio-to-preset mapping
- Week 3-4: Preset recommendation engine
- Week 5: Preset interpolation
Use Cases: "Make it sound like X"
TAREA 08: Personalization ๐ก MEDIUM¶
- Week 6-7: User interaction tracking
- Week 8: Collaborative filtering
- Week 9: Context-aware recommendations
- Week 10: Reinforcement learning integration
Use Cases: Adaptive processing, smart recommendations
TAREA 09: Audio Restoration ๐ก MEDIUM¶
- Week 11-12: Declipping network
- Week 13: Bandwidth extension
- Week 14: Historical restoration
Use Cases: Vinyl restoration, low-bitrate upsampling
Success Criteria: - โ Preset generation from reference audio - โ Personalization improving over time - โ Restoration quality acceptable (PESQ > 3.5)
๐๏ธ Technical Architecture¶
Dependency Graph¶
Level 0 (Foundation):
โโ 05_26_00_ml_framework โ ALL other TAREAS depend on this
Level 1 (Core Features):
โโ 05_26_03_classification
โโ 05_26_05_noise_reduction
โโ 05_26_07_anomaly_detection
Level 2 (Advanced Features):
โโ 05_26_04_source_separation
โโ 05_26_01_audio_generation
โโ 05_26_02_parameter_optimization
โโ depends on: 01 (DDSP for differentiable DSP)
Level 3 (Intelligence):
โโ 05_26_06_preset_generation
โ โโ depends on: 02 (parameter optimization), 03 (classification)
โโ 05_26_08_personalization
โ โโ depends on: 03 (classification), 06 (preset generation)
โโ 05_26_09_audio_restoration
โโ depends on: 05 (noise reduction)
Integration Points¶
External Dependencies:
โโ ONNX Runtime (Microsoft)
โโ TensorFlow Lite (Google)
โโ LibTorch (PyTorch C++)
โโ OpenVINO (Intel, optional)
AudioLab Internal Dependencies:
โโ 05_04_DSP_PROCESSING (Audio primitives, FFT)
โโ 05_11_GRAPH_SYSTEM (ML nodes in graph)
โโ 05_14_PRESET_SYSTEM (Preset integration)
โโ 05_16_PERFORMANCE_VARIANTS (SIMD optimization)
โโ 05_25_AI_ORCHESTRATOR (Model orchestration)
๐ฆ Deliverables by Phase¶
Phase 1 Deliverables¶
-
libml_framework.a- Core ML library - Model quantization CLI tool
- Performance benchmark suite
- Documentation (API reference)
Phase 2 Deliverables¶
-
libml_noise_reduction.a -
libml_classification.a -
libml_anomaly_detection.a - Pre-trained models (RNNoise, VGGish, YAMNet)
- Real-time processing examples
Phase 3 Deliverables¶
-
libml_source_separation.a(Spleeter, Demucs) -
libml_audio_generation.a(DDSP, WaveNet, GANs) -
libml_parameter_optimization.a - Pre-trained models (Spleeter 4-stem, DDSP violin/flute)
Phase 4 Deliverables¶
-
libml_preset_generation.a -
libml_personalization.a -
libml_audio_restoration.a - Complete ML subsystem integration
๐งช Testing Strategy¶
Unit Tests (Per TAREA)¶
- Model loading correctness
- Inference output validation
- Performance regression tests
- Memory leak detection
Integration Tests¶
- Multi-backend comparison (ONNX vs TFLite vs Torch)
- Real-time processing pipeline
- Graph system integration
Performance Tests¶
- Latency benchmarks (p50, p95, p99)
- Throughput testing
- CPU/GPU utilization profiling
- Memory usage under load
Quality Tests¶
- Audio quality metrics (PESQ, POLQA, SDR)
- Perceptual listening tests
- A/B comparison with reference implementations
๐ Success Metrics¶
Performance Metrics¶
| Metric | Target | Measured |
|---|---|---|
| Model Load Time | < 500ms | TBD |
| Small Model Latency | < 5ms | TBD |
| Medium Model Latency | < 20ms | TBD |
| CPU Usage (real-time) | < 15% | TBD |
| Memory per Model | < 100MB | TBD |
Quality Metrics¶
| Metric | Target | Measured |
|---|---|---|
| Noise Reduction (PESQ) | > 3.5 | TBD |
| Classification Accuracy | > 90% | TBD |
| Source Separation (SDR) | > 6 dB | TBD |
| Restoration Quality | > 3.5 PESQ | TBD |
User Experience Metrics¶
| Metric | Target | Measured |
|---|---|---|
| Preset Recommendation Acceptance | > 75% | TBD |
| Personalization Improvement | +20% over time | TBD |
| Feature Usage | > 50% users try ML features | TBD |
๐ง Development Tools¶
Build System¶
# CMakeLists.txt for ML subsystem
find_package(onnxruntime REQUIRED)
find_package(TensorFlowLite REQUIRED)
find_package(Torch REQUIRED)
add_subdirectory(05_26_00_ml_framework)
add_subdirectory(05_26_01_audio_generation)
# ... etc
Model Management¶
- Training: Python (PyTorch, TensorFlow)
- Conversion: ONNX export, TFLite conversion
- Optimization: ONNX Optimizer, TFLite Converter
- Deployment: Model registry, versioning
CI/CD Pipeline¶
- Automated testing on push
- Performance benchmarks on PR
- Model validation before merge
- Nightly builds with latest models
๐ Documentation Requirements¶
Per TAREA Documentation¶
- API Reference (Doxygen)
- Architecture diagrams
- Usage examples
- Performance characteristics
- Troubleshooting guide
System-Wide Documentation¶
- ML Framework Overview
- Model Training Guide
- Deployment Guide
- Integration Guide
- Best Practices
โ ๏ธ Risk Mitigation¶
Technical Risks¶
| Risk | Impact | Mitigation |
|---|---|---|
| Model latency too high | High | Quantization, model pruning, GPU acceleration |
| Accuracy below target | High | Larger models, more training data, ensemble methods |
| Memory usage excessive | Medium | Model compression, streaming inference |
| GPU availability | Medium | CPU fallback, DirectML, Metal support |
Project Risks¶
| Risk | Impact | Mitigation |
|---|---|---|
| Phase 1 delay | Critical | Prioritize core framework, parallel development |
| Model licensing issues | High | Use only open-source/permissive models |
| Hardware compatibility | Medium | Multi-backend support, extensive testing |
๐ Next Steps¶
Immediate Actions (This Week)¶
- Set up development environment
- Install ONNX Runtime, TFLite, LibTorch
- Create CMake build configuration
- Implement core IModelLoader interface
Week 2-3¶
- Implement Tensor abstraction
- Create ONNX backend
- Write first unit tests
Month 1 Goal¶
- Complete TAREA 00 (ML Framework)
- Successfully load and run first ONNX model
- Benchmarks showing < 5ms latency
๐ Contact & Support¶
Primary Developer: TBD ML Research Lead: TBD Integration Support: AudioLab Core Team
Last Updated: 2025-10-15 Version: 1.0 Status: ๐ด Planning Complete - Ready for Implementation