Skip to content

05_26_MACHINE_LEARNING - Planning Complete βœ…

Date: 2025-10-15 Status: 🟒 PLANNING COMPLETE - Ready for implementation


πŸ“Š Summary

The complete planning phase for AudioLab's Machine Learning subsystem has been completed. All 10 TAREAS have been architecturally designed with detailed implementation plans.


βœ… Deliverables Created

πŸ“ Folder Structure (100% Complete)

05_26_MACHINE_LEARNING/
β”œβ”€β”€ 05_26_00_ml_framework/          βœ… Core ML infrastructure
β”œβ”€β”€ 05_26_01_audio_generation/      βœ… Neural synthesis
β”œβ”€β”€ 05_26_02_parameter_optimization/βœ… Auto DSP tuning
β”œβ”€β”€ 05_26_03_classification/        βœ… Audio classification
β”œβ”€β”€ 05_26_04_source_separation/     βœ… Stem extraction
β”œβ”€β”€ 05_26_05_noise_reduction/       βœ… ML denoising
β”œβ”€β”€ 05_26_06_preset_generation/     βœ… Preset AI
β”œβ”€β”€ 05_26_07_anomaly_detection/     βœ… Quality monitoring
β”œβ”€β”€ 05_26_08_personalization/       βœ… Adaptive processing
└── 05_26_09_audio_restoration/     βœ… Audio repair

Each TAREA contains: - βœ… include/ - Header files directory - βœ… src/ - Implementation directory - βœ… tests/ - Unit tests directory - βœ… examples/ - Usage examples directory - βœ… models/ - Pre-trained models directory - βœ… data/ - Sample datasets directory - βœ… README.md - Complete documentation

πŸ“– Documentation (100% Complete)

Main Documentation

  • βœ… README.md - Subsystem overview, architecture, roadmap
  • βœ… IMPLEMENTATION_PLAN.md - 4-phase implementation plan with timelines
  • βœ… INTEGRATION_GUIDE.md - Integration with other subsystems
  • βœ… PLANNING_COMPLETE.md - This document

TAREA-Specific Documentation (10/10 Complete)

  1. βœ… TAREA 00: ML Framework - Core infrastructure (ONNX, TFLite, LibTorch)
  2. βœ… TAREA 01: Audio Generation - WaveNet, DDSP, NSynth, GANs, Diffusion
  3. βœ… TAREA 02: Parameter Optimization - Genetic algorithms, Differentiable DSP
  4. βœ… TAREA 03: Classification - VGGish, YAMNet, instrument/genre detection
  5. βœ… TAREA 04: Source Separation - Spleeter, Demucs, 4-stem extraction
  6. βœ… TAREA 05: Noise Reduction - RNNoise, DeepFilterNet, speech enhancement
  7. βœ… TAREA 06: Preset Generation - Audio-to-preset, recommendations
  8. βœ… TAREA 07: Anomaly Detection - Autoencoder, quality monitoring
  9. βœ… TAREA 08: Personalization - User models, adaptive processing
  10. βœ… TAREA 09: Audio Restoration - Declipping, bandwidth extension

🎯 Implementation Priorities

πŸ”₯ Critical Path (Must-Have)

TAREA 00: ML Framework - Foundation for everything - ONNX Runtime, TFLite, LibTorch integration - Model loading, inference, quantization - CPU/GPU acceleration

πŸ”₯ High Priority (Phase 2)

TAREA 05: Noise Reduction - High user demand - RNNoise integration - Real-time speech enhancement

TAREA 03: Classification - Enables intelligent routing - Instrument/genre detection - Event classification

TAREA 04: Source Separation - Key production feature - 4-stem extraction (vocals, drums, bass, other) - Real-time separation

🟑 Medium Priority (Phase 3-4)

  • TAREA 01: Audio Generation (neural synthesis)
  • TAREA 02: Parameter Optimization (auto-tuning)
  • TAREA 06: Preset Generation (AI presets)
  • TAREA 07: Anomaly Detection (quality monitoring)
  • TAREA 08: Personalization (adaptive processing)
  • TAREA 09: Audio Restoration (audio repair)

πŸ“ˆ Implementation Timeline

Phase 1: Foundation (Q1 2025 - 10 weeks)

Goal: Build ML Framework core - Week 1-6: TAREA 00 implementation - Week 7-10: Testing, optimization, documentation

Deliverable: Working ML inference engine with 3 backends

Phase 2: Core Features (Q2 2025 - 12 weeks)

Goal: Production-ready ML features - TAREA 05: Noise Reduction - TAREA 03: Classification - TAREA 07: Anomaly Detection

Deliverable: 3 production-ready ML effects

Phase 3: Advanced Features (Q3 2025 - 14 weeks)

Goal: Advanced ML capabilities - TAREA 04: Source Separation - TAREA 01: Audio Generation - TAREA 02: Parameter Optimization

Deliverable: Advanced ML processing suite

Phase 4: Intelligence (Q4 2025 - 10 weeks)

Goal: AI-powered intelligence - TAREA 06: Preset Generation - TAREA 08: Personalization - TAREA 09: Audio Restoration

Deliverable: Complete ML subsystem


πŸ”§ Technical Architecture

Multi-Backend ML Framework

Application Layer
     ↓
ML Framework (05_26_00)
     ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  ONNX   β”‚  TFLite  β”‚ LibTorchβ”‚
β”‚ Runtime β”‚          β”‚ (PyTorch)β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
     ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   CPU   β”‚   GPU    β”‚   NPU   β”‚
β”‚  (SIMD) β”‚(CUDA/DML)β”‚(CoreML) β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Integration with AudioLab

05_26_ML ←→ 05_11_GRAPH_SYSTEM (ML nodes in audio graph)
05_26_ML ←→ 05_04_DSP (Feature extraction, post-processing)
05_26_ML ←→ 05_14_PRESET_SYSTEM (AI presets)
05_26_ML ←→ 05_16_PERFORMANCE_VARIANTS (SIMD optimization)
05_26_ML ←→ 05_25_AI_ORCHESTRATOR (Model orchestration)

πŸ“Š Success Metrics

Performance Targets

Metric Target Status
Model Load Time < 500ms πŸ”΄ Not started
Inference Latency (small) < 5ms πŸ”΄ Not started
Inference Latency (medium) < 20ms πŸ”΄ Not started
CPU Usage (real-time) < 15% πŸ”΄ Not started
Memory per Model < 100MB πŸ”΄ Not started

Quality Targets

Feature Target Status
Noise Reduction (PESQ) > 3.5 πŸ”΄ Not started
Classification Accuracy > 90% πŸ”΄ Not started
Source Separation (SDR) > 6 dB πŸ”΄ Not started
Restoration Quality > 3.5 PESQ πŸ”΄ Not started

πŸ“š Key Technologies

ML Frameworks

  • ONNX Runtime - Cross-platform inference (Microsoft)
  • TensorFlow Lite - Mobile/embedded deployment (Google)
  • LibTorch - PyTorch C++ API (Meta)
  • OpenVINO - Intel CPU/GPU optimization (optional)

Pre-Trained Models

  • RNNoise - Real-time noise suppression
  • Spleeter - 4-stem source separation (Deezer)
  • Demucs - Advanced source separation (Meta)
  • VGGish - Audio classification (Google)
  • YAMNet - AudioSet classification (Google)
  • DDSP - Differentiable DSP (Google Magenta)

Audio ML Libraries

  • librosa - Feature extraction
  • essentia - Audio analysis
  • nnAudio - Differentiable audio processing

πŸš€ Next Steps

Immediate Actions (Week 1)

  1. βœ… Planning complete
  2. ⏳ Set up development environment
  3. ⏳ Install ONNX Runtime, TFLite, LibTorch
  4. ⏳ Create CMake build configuration
  5. ⏳ Begin TAREA 00 implementation

Week 2-3

  1. ⏳ Implement IModelLoader interface
  2. ⏳ Implement Tensor abstraction
  3. ⏳ Create ONNX backend
  4. ⏳ Write first unit tests

Month 1 Milestone

  • ⏳ Complete TAREA 00 (ML Framework)
  • ⏳ Successfully load and run first ONNX model
  • ⏳ Benchmarks showing < 5ms latency
  • ⏳ Documentation published

πŸŽ“ Learning Resources

  1. WaveNet (van den Oord et al., 2016) - Audio synthesis
  2. DDSP (Engel et al., 2020) - Differentiable DSP
  3. Spleeter (Deezer, 2019) - Source separation
  4. Demucs (DΓ©fossez et al., 2021) - Hybrid separation
  5. RNNoise (Valin, 2018) - Real-time denoising

Tutorials

  • ONNX Runtime C++ API
  • TensorFlow Lite for C++
  • LibTorch (PyTorch C++) tutorials
  • Audio ML best practices

πŸ“ž Contact

ML Architecture: Designed and planned Implementation Team: TBD Integration Support: AudioLab Core Team


βœ… Planning Phase Checklist

  • βœ… Architecture design complete
  • βœ… 10 TAREAS defined
  • βœ… Folder structure created
  • βœ… README.md for all TAREAS
  • βœ… Implementation plan documented
  • βœ… Integration guide created
  • βœ… Priorities established
  • βœ… Timeline defined
  • βœ… Success metrics specified
  • βœ… Technologies selected
  • βœ… Resources identified

πŸŽ‰ Ready for Implementation!

The ML subsystem planning is 100% complete. All architectural decisions have been made, documentation is in place, and the implementation roadmap is clear.

Status: 🟒 READY TO CODE


Planning Completed: 2025-10-15 Version: 1.0 Next Phase: Implementation begins with TAREA 00 (ML Framework)